Communication Dans Un Congrès Année : 2021

Data-Driven Abstraction of Monotone Systems

Anas Makdesi
  • Fonction : Auteur
  • PersonId : 1097770
Antoine Girard
Laurent Fribourg
  • Fonction : Auteur
  • PersonId : 1097771

Résumé

In this paper, we introduce an approach for the data-driven abstraction of monotone dynamical systems. First, we introduce a set-valued simulating map, which over-approximates the dynamics of an unknown monotone system, using only a set of transitions generated by it. We establish the minimality of the introduced simulating map. Then, we show that the system, with this map as its transition relation, is equivalent (in the sense of alternating bisimulation) to a finite-state system. This equivalence enables the use of well-established symbolic control techniques to synthesize controllers. We show the effectiveness of the approach on a safety controller synthesis problem.
Fichier principal
Vignette du fichier
makdesi20.pdf (438.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03216643 , version 1 (04-05-2021)

Identifiants

  • HAL Id : hal-03216643 , version 1

Citer

Anas Makdesi, Antoine Girard, Laurent Fribourg. Data-Driven Abstraction of Monotone Systems. Learning for Dynamics and Control Conference, Jun 2021, Zurich, Switzerland. ⟨hal-03216643⟩
126 Consultations
148 Téléchargements

Partager

More