Communication Dans Un Congrès Année : 2021

Determination of limit cycles using stroboscopic set-valued maps

Jawher Jerray
Laurent Fribourg
  • Fonction : Auteur
  • PersonId : 1097771

Résumé

Given a dynamical system $Σp$ with a parameter $p$ taking its values in a fixed interval $\mathcal{Q}$, we present a simple criterion of set inclusion which guarantees that the Euler approximate solutions of $Σp_0$ for some value $p_0$ $∈$ $\mathcal{Q}$ converge to a limit cycle $\mathcal{E}$. Moreover, we characterize a compact set $\mathcal{I}$ containing $\mathcal{E}$ which is invariant for the exact solutions of $Σp$ whatever the value of $p$∈ $\mathcal{Q}$. We illustrate the application of our method on the example of a parametric Van der Pol system driven by a periodic input.
Fichier principal
Vignette du fichier
ADHS21_0032_FI.pdf (480.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03249763 , version 1 (04-06-2021)

Licence

Identifiants

Citer

Jawher Jerray, Laurent Fribourg. Determination of limit cycles using stroboscopic set-valued maps. Proceedings of the 7th IFAC Conference on Analysis and Design of Hybrid Systems (ADHS 2021), Jul 2021, Brussels, Belgium. pp.139-144, ⟨10.1016/j.ifacol.2021.08.488⟩. ⟨hal-03249763⟩
164 Consultations
159 Téléchargements

Altmetric

Partager

More