Communication Dans Un Congrès Année : 2020

Encoding of Predicate Subtyping with Proof Irrelevance in the λΠ-Calculus Modulo Theory

Résumé

The λΠ-calculus modulo theory is a logical framework in which various logics and type systems can be encoded, thus helping the cross-verification and interoperability of proof systems based on those logics and type systems. In this paper, we show how to encode predicate subtyping and proof irrelevance, two important features of the PVS proof assistant. We prove that this encoding is correct and that encoded proofs can be mechanically checked by Dedukti, a type checker for the λΠ-calculus modulo theory using rewriting.
Fichier principal
Vignette du fichier
main.pdf (692.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03279766 , version 1 (06-07-2021)
hal-03279766 , version 2 (25-10-2021)

Identifiants

Citer

Gabriel Hondet, Frédéric Blanqui. Encoding of Predicate Subtyping with Proof Irrelevance in the λΠ-Calculus Modulo Theory. TYPES 2020 - 26th International Conference on Types for Proofs and Programs, Mar 2020, Turino, Italy. ⟨10.4230/LIPIcs.TYPES.2020.6⟩. ⟨hal-03279766v2⟩
167 Consultations
170 Téléchargements

Altmetric

Partager

More