Decidability of a Sound Set of Inference Rules for Computational Indistinguishability - Laboratoire Méthodes Formelles
Article Dans Une Revue ACM Transactions on Computational Logic Année : 2021

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability

Adrien Koutsos

Résumé

Computational indistinguishability is a key property in cryptography and verification of security protocols. Current tools for proving it rely on cryptographic game transformations. We follow Bana and Comon's approach, axiomatizing what an adversary cannot distinguish. We prove the decidability of a set of first-order axioms which are computationally sound, though incomplete, for protocols with a bounded number of sessions whose security is based on an ind-cca2 encryption scheme. Alternatively, our result can be viewed as the decidability of a family of cryptographic game transformations. Our proof relies on term rewriting and automated deduction techniques.
Fichier principal
Vignette du fichier
hal.pdf (1.43 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03469091 , version 1 (07-12-2021)

Identifiants

Citer

Adrien Koutsos. Decidability of a Sound Set of Inference Rules for Computational Indistinguishability. ACM Transactions on Computational Logic, 2021, 22 (1), pp.1 - 44. ⟨10.1145/3423169⟩. ⟨hal-03469091⟩
60 Consultations
79 Téléchargements

Altmetric

Partager

More