Gaussian elimination versus Greedy methods for the synthesis of linear reversible circuits - Laboratoire Méthodes Formelles
Article Dans Une Revue ACM Transactions on Quantum Computing Année : 2021

Gaussian elimination versus Greedy methods for the synthesis of linear reversible circuits

Résumé

Linear reversible circuits represent a subclass of reversible circuits with many applications in quantum computing. These circuits can be efficiently simulated by classical computers and their size is polynomially bounded by the number of qubits, making them a good candidate to deploy efficient methods to reduce computational costs. We propose a new algorithm for synthesizing any linear reversible operator by using an optimized version of the Gaussian elimination algorithm coupled with a tuned LU factorization. We also improve the scalability of purely greedy methods. Overall, on random operators, our algorithms improve the state-of-the-art methods for specific ranges of problem sizes: The custom Gaussian elimination algorithm provides the best results for large problem sizes (n > 150), while the purely greedy methods provide quasi optimal results when n < 30. On a benchmark of reversible functions, we manage to significantly reduce the CNOT count and the depth of the circuit while keeping other metrics of importance (T-count, T-depth) as low as possible.
Fichier principal
Vignette du fichier
2201.06508.pdf (718.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03547117 , version 1 (08-02-2024)

Licence

Identifiants

Citer

Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, Simon Martiel, Cyril Allouche. Gaussian elimination versus Greedy methods for the synthesis of linear reversible circuits. ACM Transactions on Quantum Computing, 2021, 2 (3), pp.11. ⟨10.1145/3474226⟩. ⟨hal-03547117⟩
170 Consultations
38 Téléchargements

Altmetric

Partager

More