Article Dans Une Revue IEEE Transactions on Quantum Engineering Année : 2021

Reducing the depth of linear reversible quantum circuits

Résumé

In quantum computing the decoherence time of the qubits determines the computation time available and this time is very limited when using current hardware. In this paper we minimize the execution time (the depth) for a class of circuits referred to as linear reversible circuits, which has many applications in quantum computing (e.g., stabilizer circuits, “CNOT+T” circuits, etc.). We propose a practical formulation of a divide and conquer algorithm that produces quantum circuits that are twice as shallow as those produced by existing algorithms. We improve the theoretical upper bound of the depth in the worst case for some range of qubits. We also propose greedy algorithms based on cost minimization to find more optimal circuits for small or simple operators. Overall, we manage to consistently reduce the total depth of a class of reversible functions, with up to 92% savings in an ancilla-free case and up to 99% when ancillary qubits are available.
Fichier principal
Vignette du fichier
Reducing_the_Depth_of_Linear_Reversible_Quantum_Circuits.pdf (3.73 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03553916 , version 1 (01-06-2022)

Licence

Identifiants

Citer

Timothee Goubault De Brugiere, Marc Baboulin, Benoît Valiron, Simon Martiel, Cyril Allouche. Reducing the depth of linear reversible quantum circuits. IEEE Transactions on Quantum Engineering, inPress, 2, pp.3102422. ⟨10.1109/TQE.2021.3091648⟩. ⟨hal-03553916⟩
223 Consultations
214 Téléchargements

Altmetric

Partager

More