A discrete relativistic spacetime formalism for 1 + 1-QED with continuum limits - Laboratoire Méthodes Formelles
Article Dans Une Revue Scientific Reports Année : 2022

A discrete relativistic spacetime formalism for 1 + 1-QED with continuum limits

Résumé

We build a quantum cellular automaton (QCA) which coincides with $$1+1$$ 1 + 1 QED on its known continuum limits. It consists in a circuit of unitary gates driving the evolution of particles on a one dimensional lattice, and having them interact with the gauge field on the links. The particles are massive fermions, and the evolution is exactly U (1) gauge-invariant. We show that, in the continuous-time discrete-space limit, the QCA converges to the Kogut–Susskind staggered version of $$1+1$$ 1 + 1 QED. We also show that, in the continuous spacetime limit and in the free one particle sector, it converges to the Dirac equation—a strong indication that the model remains accurate in the relativistic regime.
Fichier principal
Vignette du fichier
41598_2022_Article_6241.pdf (1.59 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-03594721 , version 1 (28-09-2023)

Licence

Identifiants

Citer

Kevissen Sellapillay, Pablo Arrighi, Di Molfetta Giuseppe. A discrete relativistic spacetime formalism for 1 + 1-QED with continuum limits. Scientific Reports, 2022, 12 (1), pp.2198. ⟨10.1038/s41598-022-06241-4⟩. ⟨hal-03594721⟩
198 Consultations
28 Téléchargements

Altmetric

Partager

More