Article Dans Une Revue European Journal of Control Année : 2022

Asymptotic Error in Euler’s Method with a Constant Step Size

Résumé

In the gradient descent method, one often focus on the convergence of the sequence generated by the algorithm, but less often on the deviation of these points from the solutions of the original continuous-time differential equation (gradient flow). This also happens when discretizing other ordinary differential equations. In the case of a discretization by explicit Euler’s method with a constant step h, we provide here sufficient conditions, in terms of strong monotonicity and co-coercivity, for the deviation between discrete and continuous solutions to tend asymptotically towards zero. This analysis could shed new light on some applications of the gradient descent algorithm.
Fichier principal
Vignette du fichier
EJC-6.pdf (568.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03816598 , version 1 (17-10-2022)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Jawher Jerray, Adnane Saoud, Laurent Fribourg. Asymptotic Error in Euler’s Method with a Constant Step Size. European Journal of Control, 2022, 68, pp.100694. ⟨10.1016/j.ejcon.2022.100694⟩. ⟨hal-03816598⟩
137 Consultations
201 Téléchargements

Altmetric

Partager

More