Article Dans Une Revue Quantum Année : 2023

A relativistic discrete spacetime formulation of 3+1 QED

Résumé

This work provides a relativistic, digital quantum simulation scheme for 3+1 quantum electrodynamics (QED), based on a discrete spacetime formulation of theory. It takes the form of a quantum circuit, infinitely repeating across space and time, parameterized by the discretization step Delta t=Delta x. Strict causality is ensured as circuit wires coincide with the lightlike worldlines of QED; simulation time under decoherence is optimized. The construction replays the logic that leads to the QED Lagrangian. Namely, it starts from the Dirac quantum walk, well-known to converge towards free relativistic fermions. It then extends the quantum walk into a multi-particle sector quantum cellular automata in a way which respects the fermionic anti-commutation relations and the discrete gauge invariance symmetry. Both requirements can only be achieved at cost of introducing the gauge field. Lastly the gauge field is given its own electromagnetic dynamics, which can be formulated as a quantum walk at each plaquette.
Fichier principal
Vignette du fichier
q-2023-11-08-1179.pdf (913.66 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03944082 , version 1 (08-10-2024)

Identifiants

Citer

Nathanaël Eon, Giuseppe Di Molfetta, Giuseppe Magnifico, Pablo Arrighi. A relativistic discrete spacetime formulation of 3+1 QED. Quantum, 2023, 7, pp.1179. ⟨10.22331/q-2023-11-08-1179⟩. ⟨hal-03944082⟩
156 Consultations
13 Téléchargements

Altmetric

Partager

More