Proving the Convergence to Limit Cycles using Periodically Decreasing Jacobian Matrix Measures - Laboratoire Méthodes Formelles
Pré-Publication, Document De Travail Année : 2023

Proving the Convergence to Limit Cycles using Periodically Decreasing Jacobian Matrix Measures

Résumé

Methods based on "(Jacobian) matrix measure" to show the convergence of a dynamical system to a limit cycle (LC), generally assume that the measure is negative everywhere on the LC. We relax this assumption by assuming that the matrix measure is negative "on average" over one period of LC. Using an approximate Euler trajectory, we thus present a method that guarantees the LC existence, and allows us to construct a basin of attraction. This is illustrated on the example of the Van der Pol system.
Fichier principal
Vignette du fichier
NCSS_ell.pdf (442.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04142766 , version 1 (27-06-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Jawher Jerray, Laurent Fribourg. Proving the Convergence to Limit Cycles using Periodically Decreasing Jacobian Matrix Measures. 2023. ⟨hal-04142766⟩
54 Consultations
42 Téléchargements

Altmetric

Partager

More