Introducing Divergence for Infinite Probabilistic Models - Laboratoire Méthodes Formelles
Communication Dans Un Congrès Année : 2023

Introducing Divergence for Infinite Probabilistic Models

Résumé

Computing the reachability probability in infinite state probabilistic models has been the topic of numerous works. Here we introduce a new property called divergence that when satisfied allows to compute reachability probabilities up to an arbitrary precision. One of the main interest of divergence is that our algorithm does not require the reachability problem to be decidable. Then we study the decidability of divergence for probabilistic versions of pushdown automata and Petri nets where the weights associated with transitions may also depend on the current state. This should be contrasted with most of the existing works that assume weights independent of the state. Such an extended framework is motivated by the modeling of real case studies. Moreover, we exhibit some divergent subclasses of channel systems and pushdown automata, particularly suited for specifying open distributed systems and networks prone to performance collapsing in order to compute the probabilities related to service requirements.
Fichier principal
Vignette du fichier
Divergence_RP2023.pdf (412.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04271224 , version 1 (06-11-2023)

Licence

Identifiants

Citer

Alain Finkel, Serge Haddad, Lina Ye. Introducing Divergence for Infinite Probabilistic Models. RP 2023 - 17th International Conference on Reachability Problems, Oct 2023, Nice, France. pp.127-140, ⟨10.1007/978-3-031-45286-4_10⟩. ⟨hal-04271224⟩
93 Consultations
66 Téléchargements

Altmetric

Partager

More