Kuroda's Translation for the λΠ-Calculus Modulo Theory and Dedukti - Laboratoire Méthodes Formelles
Communication Dans Un Congrès Année : 2024

Kuroda's Translation for the λΠ-Calculus Modulo Theory and Dedukti

Résumé

Kuroda's translation embeds classical first-order logic into intuitionistic logic, through the insertion of double negations. Recently, Brown and Rizkallah extended this translation to higher-order logic. In this paper, we adapt it for theories encoded in higher-order logic in the lambdaPi-calculus modulo theory, a logical framework that extends lambda-calculus with dependent types and user-defined rewrite rules. We develop a tool that implements Kuroda's translation for proofs written in Dedukti, a proof language based on the lambdaPi-calculus modulo theory.
Fichier principal
Vignette du fichier
paper.cgi.pdf (175.34 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04646168 , version 1 (12-07-2024)

Licence

Identifiants

Citer

Thomas Traversié. Kuroda's Translation for the λΠ-Calculus Modulo Theory and Dedukti. LFMTP 2024 - International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, Jul 2024, Tallinn, Estonia. pp.35-48, ⟨10.4204/eptcs.404.3⟩. ⟨hal-04646168⟩
57 Consultations
40 Téléchargements

Altmetric

Partager

More