Pré-Publication, Document De Travail Année : 2024

Dirac quantum walk on tetrahedra

Résumé

Discrete-time Quantum Walks (QWs) are transportation models of single quantum particles over a lattice. Their evolution is driven through causal and local unitary operators. QWs are a powerful tool for quantum simulation of fundamental physics as some of them have a continuum limit converging to well-known physics partial differential equations, such as the Dirac or the Schrödinger equation. In this work, we show how to recover the Dirac equation in (3+1)-dimensions with a QW evolving in a tetrahedral space. This paves the way to simulate the Dirac equation on a curved spacetime. This also suggests an ordered scheme for propagating matter over a spin network, of interest in Loop Quantum Gravity where matter propagation has remained an open problem.
Fichier principal
Vignette du fichier
2404.09840v1.pdf (2.7 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04727049 , version 1 (08-10-2024)

Licence

Identifiants

Citer

Ugo Nzongani, Nathanaël Eon, Iván Márquez-Martín, Armando Pérez, Giuseppe Di Molfetta, et al.. Dirac quantum walk on tetrahedra. 2024. ⟨hal-04727049⟩
59 Consultations
22 Téléchargements

Altmetric

Partager

More