Efficient Large Deviation Estimation Based on Importance Sampling - Laboratoire de Probabilités, Statistique et Modélisation Access content directly
Journal Articles Journal of Statistical Physics Year : 2020

Efficient Large Deviation Estimation Based on Importance Sampling


We present a complete framework for determining the asymptotic (or logarithmic) efficiency of estimators of large deviation probabilities and rate functions based on importance sampling. The framework relies on the idea that importance sampling in that context is fully characterized by the joint large deviations of two random variables: the observable defining the large deviation probability of interest and the likelihood factor (or Radon-Nikodym derivative) connecting the original process and the modified process used in importance sampling. We recover with this framework known results about the asymptotic efficiency of the exponential tilting and obtain new necessary and sufficient conditions for a general change of process to be asymptotically efficient. This allows us to construct new examples of efficient estimators for sample means of random variables that do not have the exponential tilting form. Other examples involving Markov chains and diffusions are presented to illustrate our results.
Fichier principal
Vignette du fichier
gt.pdf (520.36 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03943580 , version 1 (17-01-2023)



Arnaud Guyader, Hugo Touchette. Efficient Large Deviation Estimation Based on Importance Sampling. Journal of Statistical Physics, 2020, 181 (2), pp.551-586. ⟨10.1007/s10955-020-02589-x⟩. ⟨hal-03943580⟩
7 View
3 Download



Gmail Facebook Twitter LinkedIn More