Model Prediction of Self-Rotating Excitons in Two-Dimensional Transition-Metal Dichalcogenides - Laboratoire de Physique des Solides d'Orsay
Article Dans Une Revue Physical Review Letters Année : 2018

Model Prediction of Self-Rotating Excitons in Two-Dimensional Transition-Metal Dichalcogenides

Résumé

Using the quasiclassical concept of Berry curvature we demonstrate that a Dirac exciton—a pair of Dirac quasiparticles bound by Coulomb interactions—inevitably possesses an intrinsic angular momentum making the exciton effectively self-rotating. The model is applied to excitons in two-dimensional transition metal dichalcogenides, in which the charge carriers are known to be described by a Dirac-like Hamiltonian. We show that the topological self-rotation strongly modifies the exciton spectrum and, as a consequence, resolves the puzzle of the overestimated two-dimensional polarizability employed to fit earlier spectroscopic measurements.
Fichier principal
Vignette du fichier
1708.03638v2.pdf (233.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02323302 , version 1 (29-10-2024)

Identifiants

Citer

Maxim Trushin, Mark Oliver Goerbig, Wolfgang Belzig. Model Prediction of Self-Rotating Excitons in Two-Dimensional Transition-Metal Dichalcogenides. Physical Review Letters, 2018, 120 (18), pp.187401. ⟨10.1103/PhysRevLett.120.187401⟩. ⟨hal-02323302⟩
18 Consultations
3 Téléchargements

Altmetric

Partager

More