High frequency quantum noise of mesoscopic systems and current-phase relation of hybrid junctions
Bruit quantique haute fréquence de systèmes mésocopiques et relation courant-phase de jonctions hybrides
Résumé
This thesis discusses two experiments of mesoscopic physics regarding the high frequency quantum noise and the superconducting proximity effect. We nevertheless focused on a single model system: the carbon nanotube. The first experiment aims to measure the high frequency quantum noise of the tube. In order to measure those fluctuations we have designed an original on-chip detection scheme in which the noise source and the detector, a Superconductor/Insulator/Superconductor junction, were coupled through a resonant circuit. This first allowed us to measure the equilibrium noise of the resonator. It exhibits a strong asymmetry between emission and absorption related to zero point fluctuations. We have then measured the out-of-equilibrium emission noise of quasiparticles tunneling of a Josephson junction. It exhibits a strong frequency dependence in agreement with theoretical predictions and allowed us to validate the detection scheme. Finally, the out-of-equilibrium emission noise associated to the Kondo effect (characteristic energy kBTK with TK the Kondo temperature) in a carbon nanotube quantum dot was measured. We find a strong singularity at voltage V=hν/e (ν is the measurement frequency) for frequency ν~kBTK/h. This singularity is related to resonances in the density of states of the dot pinned at the Fermi energy of the leads. At higher frequency hν~3kBTK the singularity vanishes and understood in terms of decoherence effects induced by the bias voltage. In the second experiment, we have developed a technique allowing to measure in the same experiment the current-phase relation and the current-voltage characteristic of a weak link separating two superconductors. We have characterized a carbon nanotube based junction through which a gate tunable current-phase relation was observed. Jointly to a high critical current amplitude, an anharmonic current-phase relation was measured.
Cette thèse est consacrée à l’étude de deux aspects de la physique mésoscopique que sont le bruit quantique haute fréquence et l'effet de proximité supraconducteur en se focalisant toutefois sur un système modèle: le nanotube de carbone.Ainsi la première partie de cette thèse est dédiée à la mesure de bruit quantique haute fréquence. Afin de mesurer ces fluctuations nous avons développé un système de détection "on-chip" original dans lequel la source de bruit et le détecteur, une jonction Supraconducteur/Isolant/Supraconducteur, sont couplés par un circuit résonant. Cela nous a permis dans un premier temps de mesurer le bruit à l'équilibre du résonateur. Son bruit comporte une forte asymétrie entre émission et absorption reliée aux fluctuations de point zéro. Une seconde étape a été de mesurer le bruit hors équilibre d’émission du passage tunnel de quasi-particules dans une jonction Josephson. Ce bruit comporte une forte dépendance en fréquence en accord avec les prédictions théoriques et nous a permis de valider le principe de détection. Finalement, nous avons pu mesurer le bruit associé au régime Kondo hors équilibre d'une boîte quantique à nanotube de carbone (énergie caractéristique kBTK avec TK la température Kondo). Ce bruit d’émission à kBTK~hν possède une forte singularité à la tension V=hν/e (ν étant la fréquence de mesure). Cette singularité est reliée aux résonances Kondo dans la densité d’états de la boîte associés aux niveaux de Fermi de chaque réservoir. A plus haute fréquence hν~3kBTK, la singularité disparaît, ce qui est compris par des effets de décohérence induits par la tension.Dans la seconde partie, nous avons développé une technique permettant de mesurer à la fois la relation courant/phase et la caractéristique courant/tension d'un lien faible séparant deux supraconducteurs. Nous avons ainsi caractérisé une jonction à base de nanotube de carbone au travers de laquelle une relation courant-phase modulable par une tension de grille a été observée. Cette relation courant/phase exhibe une forte anharmonicité lorsque le supercourant présente une relativement grande amplitude.
Fichier principal
VA2_BASSET_JULIEN_14102011.pdf (15.66 Mo)
Télécharger le fichier
PhDDefense_annexe.pdf (3.34 Mo)
Télécharger le fichier
Origine | Version validée par le jury (STAR) |
---|
Format | Autre |
---|