Self-assembly of meso-structured materials
Auto-assemblage de matériaux méso-structurés
Résumé
Meso-structured materials are materials with a well-controlled porosity, designed from sol/gel syntheses between surfactant micelles and an inorganic precursor, most often a silica precursor. Among them, the SBA-15 material, formed in super-acid solution from P123 (a tri-block copolymer) as surfactant and TEOS a silica precursor, is one of the most studied. Synthesis of this material has been studied by in situ Small Angle X-Ray Scattering (SAXS), which allowed to describe both qualitatively and quantitatively the self-assembly mechanisms between surfactant micelles and silica particles. In details, our results showed that TEOS hydrolysis-condensation allow the formation of silica oligomers that interact with the corona of the spherical micelles of P123, and progressively the micelles reshape in hybrid organic/inorganic cylindrical micelles. The hybrid micelles, first free in solution, eventually precipitate in a hybrid 2D-hexagonal mesophase. This model of synthesis is called “sphere-to-rod transition”. Moreover, in order to understand the material mechanisms of formation at every length scales, we studied the influence of the synthesis conditions on the morphology of the meso-structured material grains. Indeed, in agreement with a previous study, our results show that if the synthesis is made without stirring, the material grains has an equilibrium shape that strongly depends on the synthesis temperature. By changing the temperature, one can form hybrid materials with a “rice grain” shape, or a (short or long) rod shape, or even a torus shape. We propose a theoretical model to explain all the observed morphologies, model that takes into account surface tensions and curvature energy of the newly formed 2D-hexagonal liquid-crystal at the precipitation of the hybrid mesophase. We measured the nucleation and growth of the grains by Ultra Small Angle X-Ray Scattering (USAXS). Thanks to all these studies, we present a complete description of the formation of the SBA-15 material. Our knowledge were used to describe new in situ SAXS measurements of new materials: our “sphere-to-rod transition” model was able to describe the formation of two materials, form two fluorinated surfactants and allowed to explain the formation of a “bimodal” material, which means a material with two well-defined porous order, that is synthesized from a mix of two surfactant (P123 and (Rf₈(EO)₉). Finally, we tried to use our knowledge to form innovative materials, by replacing the micellar solution as template by an emulsion doped in gold nanoparticles (NPs) to form hybrid materials doped in NPs.
Les matériaux méso-structurés sont des matériaux à porosité contrôlée, issus de synthèses de chimie sol/gel entre micelles de tensioactifs et précurseur inorganique, le plus souvent de silice. Parmi ces matériaux, le SBA-15, formé en milieu super-acide à partir de P123 (un copolymère tribloc) comme tensioactif et de TEOS comme précurseur inorganique de silice, est un des plus étudiés. La synthèse de ce matériau a été étudiée par diffusion des rayons X à petits angles (SAXS) in situ, et a permis de décrire qualitativement et quantitativement les mécanismes d’auto-assemblages entre micelles de tensioactifs et particules silicatées. Spécifiquement, nos résultats ont montré que l’hydrolyse-condensation du TEOS en solution a permis la formation d’oligomères de silice, qui interagissent avec la couronne des micelles sphériques de P123, pour progressivement former des micelles hybrides cylindriques organiques/inorganiques, qui vont ensuite précipiter en une mésophase hybride 2D-hexagonale. Ce modèle de synthèse est appelé « transition sphères-cylindres ». De plus, afin de comprendre les mécanismes de formation du matériau à toutes les échelles, nous avons étudié l’influence des conditions de synthèse sur la morphologie des grains de matériau méso-structurés. En effet, nous avons montré que sans agitation pendant la synthèse, les grains de matériaux présentent une forme d’équilibre qui dépend fortement de la température de synthèse. En fonction de la température, il est donc possible de former des matériaux hybrides de forme grains de riz, bâtons (courts ou longs) ou mêmes sous forme de tores. Nous proposons un modèle théorique qui permet d’expliquer l’ensemble des morphologies observées, en fonction des tensions de surfaces et des énergies de courbures de cristal-liquide 2D-hexagonal lors de la précipitation de la mésophase hybride. Nous appuyons ce modèle théorique sur des études en diffusion des rayons X à très petits angles (USAXS), qui permettent d’étudier la croissance des grains. Grâce à ces études, nous proposons une description très complète de la formation du matériau SBA-15. Fort de ces connaissances, nous avons pu, grâce à de nouvelles études de SAXS in situ, appliquer le modèle de précipitation de type « transition sphères-cylindres » à d’autres matériaux, issus de tensioactifs non-ioniques fluorés, et ainsi expliquer la formation de matériaux dits « bimodaux », c’est-à-dire issus d’un mélange entre P123 et un tensioactif fluoré(Rf₈(EO)₉ et qui présentent deux ordres poreux bien définis. Enfin, nous avons cherché à utiliser nos connaissances pour la fabrication de matériaux innovants, en remplaçant la solution micellaire par des émulsions dopées en nanoparticules d’or (NPs), afin de fabriquer des matériaux hybrides dopés en NPs.
Origine | Version validée par le jury (STAR) |
---|