A modular dynamic Neuro-Synaptic platform for Spiking Neural Networks
Une plateforme neuro-synaptique dynamique modulaire pour les réseaux de neurones à impulsions
Résumé
Biological and artificial neural networks share a fundamental computational unit: the neuron. These neurons are coupled by synapses, forming complex networks that enable various functions. Similarly, neuromorphic hardware, or more generally neuro-computers, also require two hardware elements: neurons and synapses. In this work, we introduce a bio-inspired spiking Neuro-Synaptic hardware unit, fully implemented with conventional electronic components. Our hardware is based on a textbook theoretical model of the spiking neuron, and its synaptic and membrane currents. The spiking neuron is fully analog and the various models that we introduced are defined by their hardware implementation. The neuron excitability is achieved through a memristive device made from off-the-shelf electronic components. Both synaptic and membrane currents feature tunable intensities and bio-mimetic dynamics, including excitatory and inhibitory currents. All model parameters are adjustable, allowing the system to be tuned to bio-compatible timescales, which is crucial in applications such as brain-machine interfaces. Building on these two modular units, we demonstrate various basic neural network motifs (or neuro-computing primitives) and show how to combine these fundamental motifs to implement more complex network functionalities, such as dynamical memories and central pattern generators. Our hardware design also carries potential extensions for integrating oxide-based memristors (which are widely studied in material science),or porting the design to very large-scale integration (VLSI) to implement large-scale networks. The Neuro-Synaptic unit can be considered as a building block for implementing spiking neural networks of arbitrary geometry. Its compact and modular design, as well as the wide availability of ordinary electronic components, makes our approach an attractive platform for building neural interfaces in medical devices, robotics, and artificial intelligence systems such as reservoir computing.
Que le réseau de neurones soit biologique ou artificiel, il possède une unité de calcul fondamentale : le neurone. Ces neurones, interconnectés par des synapses, forment ainsi des réseaux complexes qui permettent d’obtenir une pluralité de fonctions. De même, le réseau de neurones neuromorphique, ou plus généralement les ordinateurs neuromorphiques, nécessitent également ces deux éléments fondamentaux que sont les neurones et les synapses. Dans ce travail, nous introduisons une unité matérielle neuro-synaptique à impulsions, inspirée de la biologie et entièrement réalisée avec des composants électroniques conventionnels. Le modèle de cette unité neuro-synaptique repose sur les modèles théoriques classiques du neurone à impulsions et des courants synaptiques et membranaires. Le neurone à impulsions est entièrement analogique et un dispositif memristif, dont les composants électroniques sont facilement disponibles sur le marché, permet d’assurer l’excitabilité du neurone. En ce qui concerne les courants synaptiques et membranaires, leur intensité est ajustable, et ils possèdent une dynamique biomimétique, incluant à la fois des courants excitateurs et inhibiteurs. Tous les paramètres du modèle sont ajustables et permettant ainsi d'adapter le système neuro-synaptique. Cette flexibilité et cette adaptabilité sont des caractéristiques essentielles dans la réalisation d’applications telles que les interfaces cerveau-machine. En nous appuyant sur ces deux unités modulaires, le neurone et la synapse, nous pouvons concevoir des motifs fondamentaux des réseaux de neurones. Ces motifs servent ainsi de base pour implémenter des réseaux aux fonctionnalités plus complexes, telles que des mémoires dynamiques ou des réseaux locomoteurs spinaux (Central Pattern Generator). De plus, il sera possible d’améliorer le modèle existant, que ce soit en y intégrant des memristors à base d’oxydes (actuellement étudiés en science des matériaux), ou en le déployant à grande échelle (VLSI) afin de réaliser des réseaux d’ordres de grandeurs supérieures. L’unité neuro-synaptique peut être considérée comme un bloc fondamental pour implémenter des réseaux neuronaux à impulsions de géométrie arbitraire. Son design compact et modulaire, associé à la large disponibilité des composants électroniques, font de notre plateforme une option attrayante de développement pour construire des interfaces neuronales, que ce soit dans les domaines médical, robotique, ou des systèmes d'intelligence artificielle (par exemple le calcul par réservoir), etc.
Origine | Version validée par le jury (STAR) |
---|