Scaling theory of the Anderson transition in random graphs: ergodicity and universality - Laboratoire de Physique Théorique - LPT Accéder directement au contenu
Article Dans Une Revue Physical Review Letters Année : 2017

Scaling theory of the Anderson transition in random graphs: ergodicity and universality

Résumé

We study the Anderson transition on a generic model of random graphs with a tunable branching parameter 1 < K ≤ 2, through a combination of large scale numerical simulations and finite-size scaling analysis. We find that a single Anderson transition separates a localized phase from an unusual delocalized phase which is ergodic at large scales but strongly non-ergodic at smaller scales. The critical regime is characterized by multifractal wavefunctions located on few branches of the graph. Two different scaling laws apply on both sides of the transition: a linear scaling as a function of the linear size of the system on the localized side, and an unusual volumic scaling on the delocalized side. The critical scalings and exponents are found to be independent of the branching parameter and should describe all infinite dimensional random graphs without boundary.
Fichier principal
Vignette du fichier
UniAndQNet-0909.pdf (620.84 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01366432 , version 1 (14-09-2016)

Identifiants

Citer

Ignacio Garcia-Mata, Olivier Giraud, Bertrand Georgeot, John Martin, Rémy Dubertrand, et al.. Scaling theory of the Anderson transition in random graphs: ergodicity and universality. Physical Review Letters, 2017, 118 (16), pp.166801. ⟨10.1103/PhysRevLett.118.166801⟩. ⟨hal-01366432⟩
179 Consultations
193 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More