Article Dans Une Revue Chaos: An Interdisciplinary Journal of Nonlinear Science Année : 2025

A logarithm law for nonautonomous systems fastly converging to equilibrium and mean field coupled systems

Résumé

We prove that if a nonautonomous system has in a certain sense a fast convergence to equilibrium (faster than any power law behavior) then the time τ_r(x,y) needed for a typical point x to enter for the first time in a ball B(y,r) centered in y, with small radius r scales as the local dimension of the equilibrium measure μ at y, i.e. lim(r→0) log [τ_r(x,y)]/ [-log(r)] We then apply the general result to concrete systems of different kind, showing such a logarithm law for asymptotically authonomous solenoidal maps and mean field coupled expanding maps.
Fichier principal
Vignette du fichier
HittingClimate.pdf (437) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04549099 , version 1 (17-04-2024)

Identifiants

Citer

Stefano Galatolo, Davide Faranda. A logarithm law for nonautonomous systems fastly converging to equilibrium and mean field coupled systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2025, 35 (2), ⟨10.1063/5.0221721⟩. ⟨hal-04549099⟩
91 Consultations
35 Téléchargements

Altmetric

Partager

More