High‐resolution surface‐wave‐constrained mapping of sparse dynamic cone penetrometer tests
Résumé
The dynamic cone penetrometer (DCP) provides local soil resistance information. The difference in the vertical and horizontal data resolution (centimetric vs. multi‐metric) makes it difficult to spatialize the DCP data directly. This study uses a high‐resolution Vs section, extracted by the seismic surface‐wave method, as the auxiliary and physical constraint for mapping the DCP index (DCPI). Geostatistical formalism (kriging and cokriging) is used. The associated measurement error of the seismic surface‐wave data is also included in the cokriging system, that is, the cokriging with variance of measurement error (CKVME). The proposed methods are validated for the first time on a test site designed and constructed for this study, with known geotechnical perspectives. Seismic and high‐intensity DCP campaigns were performed on the test site. The results show that with decimating the number of DCP soundings, the kriging approach is no longer capable of estimating the lateral variation in the test site, and the root‐mean‐square error (RMSE) value of the kriging section is increased by . With the help of Vs sections constraining the lateral variability model, the RMSE values of the cokriging and the CKVME sections are increased by 25% and 17%.
Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
licence |