Astroglial networking contributes to neurometabolic coupling - Molecular Imaging Research Center Accéder directement au contenu
Article Dans Une Revue Frontiers in Neuroenergetics Année : 2013

Astroglial networking contributes to neurometabolic coupling

Résumé

The strategic position of astrocytic processes between blood capillaries and neurons, provided the early insight that astrocytes play a key role in supplying energy substrates to neurons in an activity-dependent manner. The central role of astrocytes in neurometabolic coupling has been first established at the level of single cell. Since then, exciting recent work based on cellular imaging and electrophysiological recordings has provided new mechanistic insights into this phenomenon, revealing the crucial role of gap junction (GJ)-mediated networks of astrocytes. Indeed, astrocytes define the local availability of energy substrates by regulating blood flow. Subsequently, in order to efficiently reach distal neurons, these substrates can be taken up, and distributed through networks of astrocytes connected by GJs, a process modulated by neuronal activity. Astrocytic networks can be morphologically and/or functionally altered in the course of various pathological conditions, raising the intriguing possibility of a direct contribution from these networks to neuronal dysfunction. The present review upgrades the current view of neuroglial metabolic coupling, by including the recently unravelled properties of astroglial metabolic networks and their potential contribution to normal and pathological neuronal activity.
Fichier principal
Vignette du fichier
fnen.pdf (1.84 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

cea-02142608 , version 1 (29-05-2019)

Identifiants

Citer

Carole Escartin, Nathalie Rouach. Astroglial networking contributes to neurometabolic coupling. Frontiers in Neuroenergetics, 2013, 5, pp.4. ⟨10.3389/fnene.2013.00004⟩. ⟨cea-02142608⟩
40 Consultations
71 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More