Set Estimation from Projected Multidimensional Random Variables with Application to a Discrete-Time Skorokhod Problem
Résumé
This paper deals with sufficient conditions on the distribution of the random variable $H$, in the model $X =\Pi_C(H)$, for the convex hull $\widehat C_N$ of $N$ independent copies of $X$ to be a consistent estimator - with or without rate of convergence - of the convex body $C$. The convergence of $\widehat C_N$ is established for the Hausdorff distance under uniform conditions on the distribution of $H$, but also in a pointwise sense under less demanding conditions. Some of these convergence results on $\widehat C_N$ are applied to the estimation of the time-dependent constraint set involved in a discrete-time Skorokhod problem.
Domaines
Théorie [stat.TH]
Fichier principal
Set_Estimation_from_Projected_Multidimensional_Random_Variables_with_Application_to_a_Discrete_Time_Skorokhod_Problem.pdf (586.33 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|