Interaction of soliton gases in deep-water surface gravity waves - Laboratoire Matière et Systèmes Complexes Access content directly
Journal Articles Physical Review E Year : 2024

Interaction of soliton gases in deep-water surface gravity waves

Filip Novkoski
Guillaume Ricard
Eric Falcon

Abstract

Soliton gases represent large random soliton ensembles in physical systems that display integrable dynamics at leading order. We report hydrodynamic experiments in which we investigate the interaction between two beams or jets of soliton gases having nearly identical amplitudes but opposite velocities of the same magnitude. The space-time evolution of the two interacting soliton gas jets is recorded in a 140-m-long water tank where the dynamics is described at leading order by the focusing one-dimensional nonlinear Schrödinger equation. Varying the relative initial velocity of the two species of soliton gas, we change their interaction strength and we measure the macroscopic soliton gas density and velocity changes due to the interaction. Our experimental results are found to be in good quantitative agreement with predictions of the spectral kinetic theory of soliton gas despite the presence of perturbative higher-order effects that break the integrability of the wave dynamics.
Fichier principal
Vignette du fichier
2309.09604-1.pdf (7.02 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04509449 , version 1 (18-03-2024)

Identifiers

Cite

Loic Fache, Félicien Bonnefoy, Guillaume Ducrozet, François Copie, Filip Novkoski, et al.. Interaction of soliton gases in deep-water surface gravity waves. Physical Review E , 2024, 109 (3), pp.034207. ⟨10.1103/PhysRevE.109.034207⟩. ⟨hal-04509449⟩
62 View
17 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More