Article Dans Une Revue Pattern Recognition Année : 2025

Incremental clustering based on Wasserstein distance between histogram models

Résumé

In this article, we present an innovative clustering framework designed for large datasets and real-time data streams which uses a sliding window and histogram model to address the challenge of memory congestion while reducing computational complexity and improving cluster quality for both static and dynamic clustering. The framework provides a simple way to characterize the probability distribution of cluster distributions through histogram models, regardless of their distribution type. This advantage allows for efficient use with various conventional clustering algorithms. To facilitate effective clustering across windows, we use a statistical measure that allows the comparison and merging of different clusters based on the calculation of the Wasserstein distance between histograms.
Fichier principal
Vignette du fichier
1-s2.0-S0031320325000743-main.pdf (6) Télécharger le fichier
Origine Publication financée par une institution
licence

Dates et versions

hal-04941963 , version 1 (12-02-2025)

Licence

Identifiants

Citer

Xiaotong Qian, Guénaël Cabanes, Parisa Rastin, Mohamed Alae Guidani, Ghassen Marrakchi, et al.. Incremental clustering based on Wasserstein distance between histogram models. Pattern Recognition, 2025, 162, pp.111414. ⟨10.1016/j.patcog.2025.111414⟩. ⟨hal-04941963⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More