Direct numerical simulation of bubble rising in turbulence - Physique et Mécanique des Milieux Hétérogènes
Article Dans Une Revue Journal of Fluid Mechanics Année : 2024

Direct numerical simulation of bubble rising in turbulence

Résumé

We describe the rising trajectory of bubbles in isotropic turbulence and quantify the slowdown of the mean rise velocity of bubbles with sizes within the inertial subrange. We perform direct numerical simulations of bubbles, for a wide range of turbulence intensity, bubble inertia and deformability, with systematic comparison with the corresponding quiescent case, with Reynolds number at the Taylor microscale from 38 to 77. Turbulent fluctuations randomise the rising trajectory and cause a reduction of the mean rise velocity $\tilde {w}_b$ compared with the rise velocity in quiescent flow $w_b$ . The decrease in mean rise velocity of bubbles $\tilde {w}_b/w_b$ is shown to be primarily a function of the ratio of the turbulence intensity and the buoyancy forces, described by the Froude number $Fr=u'/\sqrt {gd}$ , where $u'$ is the root-mean-square velocity fluctuations, $g$ is gravity and $d$ is the bubble diameter. The bubble inertia, characterised by the ratio of inertial to viscous forces (Galileo number), and the bubble deformability, characterised by the ratio of buoyancy forces to surface tension (Bond number), modulate the rise trajectory and velocity in quiescent fluid. The slowdown of these bubbles in the inertial subrange is not due to preferential sampling, as is the case with sub-Kolmogorov bubbles. Instead, it is caused by the nonlinear drag–velocity relationship, where velocity fluctuations lead to an increased average drag. For $Fr > 0.5$ , we confirm the scaling $\tilde {w}_b / w_b \propto 1 / Fr$ , as proposed previously by Ruth et al. ( J. Fluid Mech. , vol. 924, 2021, p. A2), over a wide range of bubble inertia and deformability.
Fichier principal
Vignette du fichier
2024_Liu_JFM.pdf (5.53 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04784176 , version 1 (14-11-2024)

Licence

Identifiants

Citer

Zehua Liu, Palas Kumar Farsoiya, Stéphane Perrard, Luc Deike. Direct numerical simulation of bubble rising in turbulence. Journal of Fluid Mechanics, 2024, 999, pp.A11. ⟨10.1017/jfm.2024.763⟩. ⟨hal-04784176⟩
3 Consultations
1 Téléchargements

Altmetric

Partager

More