PoTATO: A Dataset for Analyzing Polarimetric Traces of Afloat Trash Objects - IRL2958-GT-CNRS
Communication Dans Un Congrès Année : 2024

PoTATO: A Dataset for Analyzing Polarimetric Traces of Afloat Trash Objects

Salim Khazem
Mehran Adibi
  • Fonction : Collaborateur
  • PersonId : 1416485
Seth Hutchinson
  • Fonction : Directeur scientifique
Cedric Pradalier

Résumé

Plastic waste in aquatic environments poses severe risks to marine life and human health. Autonomous robots can be utilized to collect floating waste, but they require accurate object identification ca- pability. While deep learning has been widely used as a powerful tool for this task, its performance is significantly limited by outdoor light condi- tions and water surface reflection. Light polarization, abundant in such environments yet invisible to the human eye, can be captured by mod- ern sensors to significantly improve litter detection accuracy on water surfaces. With this goal in mind, we introduce PoTATO, a dataset con- taining 12,380 labeled plastic bottles and rich polarimetric information. We demonstrate under which conditions polarization can enhance object detection and, by providing raw image data, we offer an opportunity for the research community to explore novel approaches and push the bound- aries of state-of-the-art object detection algorithms even further. Code and data are publicly available at https://github.com/luisfelipewb/ PoTATO/tree/eccv2024.
Fichier principal
Vignette du fichier
main.pdf (129.13 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04701537 , version 1 (18-09-2024)

Identifiants

Citer

Luis Felipe Wolf Batista, Salim Khazem, Mehran Adibi, Seth Hutchinson, Cedric Pradalier. PoTATO: A Dataset for Analyzing Polarimetric Traces of Afloat Trash Objects. ECCV24 TRICKY workshop, Sep 2024, Milano (Italy), Italy. ⟨hal-04701537⟩
14 Consultations
1 Téléchargements

Altmetric

Partager

More