Variational inequality solutions and finite stopping time for a class of shear-thinning flows - Laboratoire de Mathematiques
Article Dans Une Revue Annali di Matematica Pura ed Applicata Année : 2024

Variational inequality solutions and finite stopping time for a class of shear-thinning flows

Résumé

The aim of this paper is to study the existence of a finite stopping time for solutions in the form of variational inequality to fluid flows following a power law (or Ostwald-DeWaele law) in dimension $N \in \{2,3\}$. We first establish the existence of solutions for generalized Newtonian flows, valid for viscous stress tensors associated with the usual laws such as Ostwald-DeWaele, Carreau-Yasuda, Herschel-Bulkley and Bingham, but also for cases where the viscosity coefficient satisfies a more atypical (logarithmic) form. To demonstrate the existence of such solutions, we proceed by applying a nonlinear Galerkin method with a double regularization on the viscosity coefficient. We then establish the existence of a finite stopping time for threshold fluids or shear-thinning power-law fluids, i.e. formally such that the viscous stress tensor is represented by a $p$-Laplacian for the symmetrized gradient for $p \in [1,2)$.
Fichier principal
Vignette du fichier
article_generalized_newtonian_ampa.pdf (449.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03461241 , version 1 (04-12-2021)
hal-03461241 , version 2 (05-12-2022)
hal-03461241 , version 3 (30-05-2023)
hal-03461241 , version 4 (12-11-2024)

Identifiants

Citer

Laurent Chupin, Nicolae Cîndea, Geoffrey Lacour. Variational inequality solutions and finite stopping time for a class of shear-thinning flows. Annali di Matematica Pura ed Applicata, 2024, 203 (6), pp.2591--2612. ⟨https://doi.org/10.1007/s10231-024-01457-9⟩. ⟨hal-03461241v4⟩
122 Consultations
146 Téléchargements

Altmetric

Partager

More