The asymptotics of the optimal holomorphic extensions of holomorphic jets along submanifolds - Centre de mathématiques Laurent Schwartz (CMLS)
Article Dans Une Revue Journal de Mathématiques Pures et Appliquées Année : 2022

The asymptotics of the optimal holomorphic extensions of holomorphic jets along submanifolds

Siarhei Finski

Résumé

We study the asymptotics of the $L^2$-optimal holomorphic extensions of holomorphic jets associated with high tensor powers of a positive line bundle along submanifolds. More precisely, for a fixed complex submanifold in a complex manifold, we consider the operator which for a given holomorphic jet along the submanifold of a positive line bundle associates the $L^2$-optimal holomorphic extension of it to the ambient manifold. When the tensor power of the line bundle tends to infinity, we give an explicit asymptotic formula for this extension operator. This is done by a careful study of the Schwartz kernels of the extension operator and related Bergman projectors. It extends our previous results, done for holomorphic sections instead of jets. As an application, we prove the asymptotic isometry between two natural norms on the space of holomorphic jets: one induced from the ambient manifold and another from the submanifold.
Fichier principal
Vignette du fichier
main.pdf (405.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04246950 , version 1 (17-10-2023)
hal-04246950 , version 2 (12-11-2024)

Identifiants

Citer

Siarhei Finski. The asymptotics of the optimal holomorphic extensions of holomorphic jets along submanifolds. Journal de Mathématiques Pures et Appliquées, 2022, ⟨10.48550/arXiv.2207.02761⟩. ⟨hal-04246950v2⟩
38 Consultations
36 Téléchargements

Altmetric

Partager

More