Constructive Krein-Rutman result for Kinetic Fokker-Planck equations in a domain - Centre de mathématiques Laurent Schwartz (CMLS)
Pré-Publication, Document De Travail Année : 2024

Constructive Krein-Rutman result for Kinetic Fokker-Planck equations in a domain

Résumé

We consider a general Kinetic Fokker-Planck (KFP) equation in a domain with Maxwell reflection condition on the boundary, not necessarily with conservation of mass. We establish the wellposedness in many spaces including Radon measures spaces, and in particular the existence and uniqueness of fundamental solutions. We also establish a Krein-Rutman theorem with constructive rate of convergence in an abstract setting that we use for proving that the solutions to the KFP equation converge toward the conveniently normalized first eigenfunction. Both results use the ultracontractivity of the associated semigroup in a fundamental way.
Fichier principal
Vignette du fichier
KR-KFP16_arxiv.pdf (634.03 Ko) Télécharger le fichier

Dates et versions

hal-04650292 , version 1 (16-07-2024)
hal-04650292 , version 2 (27-08-2024)

Identifiants

Citer

Kleber Carrapatoso, Pierre Gabriel, Richard Medina, Stéphane Mischler. Constructive Krein-Rutman result for Kinetic Fokker-Planck equations in a domain. 2024. ⟨hal-04650292v2⟩
205 Consultations
62 Téléchargements

Altmetric

Partager

More