Article Dans Une Revue International Journal of Control Année : 2019

An explicit Floquet-type representation of Riccati aperiodic exponential semigroups

Résumé

The article presents a rather surprising Floquet-type representation of time-varying transition matri-ces associated with a class of nonlinear matrix differentialRiccati equations. The main difference withconventional Floquet theory comes from the fact that the underlying flow of the solution matrix is aperi-odic. The monodromy matrix associated with this Floquet representation coincides with the exponential(fundamental) matrix associated with the stabilizing fixedpoint of the Riccati equation. The second partof this article is dedicated to the application of this representation to the stability of matrix differentialRiccati equations. We provide refined global and local contraction inequalities for the Riccati exponentialsemigroup that depend linearly on the spectral norm of the initial condition. These refinements improveupon existing results and are a direct consequence of the Floquet-type representation, yielding whatseems to be the first results of this type for this class of models.
Fichier principal
Vignette du fichier
1805.02127v4.pdf (260.38 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02429300 , version 1 (09-01-2025)

Identifiants

Citer

Adrian N Bishop, Pierre del Moral. An explicit Floquet-type representation of Riccati aperiodic exponential semigroups. International Journal of Control, 2019, pp.1-9. ⟨10.1080/00207179.2019.1590647⟩. ⟨hal-02429300⟩
49 Consultations
0 Téléchargements

Altmetric

Partager

More