Pré-Publication, Document De Travail Année : 2024

Finite elements for Wasserstein $W_p$ gradient flows

Résumé

Wasserstein $\bbW_p$ gradient flows for nonlinear integral functionals of the density yield degenerate parabolic equations involving diffusion operators of $q$-Laplacian type, with $q$ being $p$'s conjugate exponent. We propose a finite element scheme building on conformal $\mathbb{P}_1$ Lagrange elements with mass lumping and a backward Euler time discretization strategy. Our scheme preserves mass and positivity while energy decays in time. Building on the theory of gradient flows in metric spaces, we further prove convergence towards a weak solution of the PDE that satisfies the energy dissipation equality. The analytical results are illustrated by numerical simulations.
Fichier principal
Vignette du fichier
FE4WpGF_amsart.pdf (1.82 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03719189 , version 1 (11-07-2022)
hal-03719189 , version 2 (08-01-2025)

Identifiants

  • HAL Id : hal-03719189 , version 2

Citer

Clément Cancès, Daniel Matthes, Flore Nabet, Eva-Maria Rott. Finite elements for Wasserstein $W_p$ gradient flows. 2024. ⟨hal-03719189v2⟩
219 Consultations
231 Téléchargements

Partager

More