Thèse Année : 2024

Variational Inference : theory and large scale applications.

Inférence Variationnelle : théorie et applications en grande dimension.

Résumé

This thesis explores Variational Inference methods for high-dimensional Bayesian learning. In Machine Learning, the Bayesian approach allows one to deal with epistemic uncertainty and provides and a better uncertainty quantification, which is necessary in many machine learning applications. However, Bayesian inference is often not feasible because the posterior distribution of the model parameters is generally untractable. Variational Inference (VI) allows to overcome this problem by approximating the posterior distribution with a simpler distribution called the variational distribution.In the first part of this thesis, we worked on the theoretical guarantees of Variational Inference. First, we studied VI when the Variational distribution is a Gaussian and in the overparameterized regime, i.e., when the models are high dimensional. Finally, we explore the Gaussian mixtures Variational distributions, as it is a more expressive distribution. We studied both the optimization error and the approximation error of this method.In the second part of the thesis, we studied the theoretical guarantees for contextual bandit problems using a Bayesian approach called Thompson Sampling. First, we explored the use of Variational Inference for Thompson Sampling algorithm. We notably showed that in the linear framework, this approach allows us to obtain the same theoretical guarantees as if we had access to the true posterior distribution. Finally, we consider a variant of Thompson Sampling called Feel-Good Thompson Sampling (FG-TS). This method allows to provide better theoretical guarantees than the classical algorithm. We then studied the use of a Monte Carlo Markov Chain method to approximate the posterior distribution. Specifically, we incorporated into FG-TS a Langevin Monte Carlo algorithm and a Metropolized Langevin Monte Carlo algorithm. Moreover, we obtained the same theoretical guarantees as for FG-TS when the posterior distribution is known.
Cette thèse développe des méthodes d'Inférence Variationnelle pour l'apprentissage bayésien en grande dimension. L'approche bayésienne en machine learning permet de gérer l'incertitude épistémique des modèles et ainsi de mieux quantifier l'incertitude de ces modèles, ce qui est nécessaire dans de nombreuses applications de machine learning. Cependant, l'inférence bayésienne n'est souvent pas réalisable car la distribution à posteriori des paramètres du modèle n'est pas calculable en général. L'Inférence Variationnelle (VI) est une approche qui permet de contourner ce problème en approximant la distribution à posteriori par une distribution plus simple appelée distribution Variationnelle.Dans la première partie de cette thèse, nous avons travaillé sur les garanties théoriques de l'Inférence Variationnelle. Dans un premier temps, nous avons étudié cette approche lorsque la distribution Variationnelle est une Gaussienne, dans le régime surparamétré, c'est-à-dire lorsque les modèles sont en très grande dimension. Puis, nous nous sommes intéressés aux distributions Variationnelles plus expressives que sont les mélanges de Gaussiennes et nous avons étudié à la fois l'erreur d'optimisation et l'erreur d'approximation de cette méthode.Dans la deuxième partie de la thèse, nous avons étudié les garanties théoriques des problèmes de bandit contextuels en utilisant une approche bayésienne appelée Thompson Sampling. Dans un premier temps, nous avons exploré l'utilisation d'Inférence Variationnelle pour l'algorithme Thompson Sampling. Nous avons notament démontré que dans le cadre linéaire, cette approche permet d'obtenir les mêmes garanties théoriques que lorsque la distribution à posteriori est connue. Dans un deuxième temps, nous avons étudié une variante de Thompson Sampling appelée Feel-Good Thompson Sampling (FG-TS). Cette méthode permet d'obtenir de meilleures garanties théoriques que l'algorithme classique. Nous avons alors étudié l'utilisation d'une méthode de Monte Carlo Markov Chain pour approximer la distribution à posteriori. Plus spécifiquement, nous avons ajouté à FG-TS un algorithme de Langevin Monte Carlo et de Metropolized Langevin Monte Carlo. De plus, nous avons obtenu les mêmes garanties théoriques que pour FG-TS lorsque la distribution à posteriori est connue.
Fichier principal
Vignette du fichier
139137_HUIX_2024_archivage.pdf (8.07 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04876921 , version 1 (09-01-2025)

Identifiants

  • HAL Id : tel-04876921 , version 1

Citer

Tom Huix. Variational Inference : theory and large scale applications.. Machine Learning [stat.ML]. Institut Polytechnique de Paris, 2024. English. ⟨NNT : 2024IPPAX071⟩. ⟨tel-04876921⟩
0 Consultations
0 Téléchargements

Partager

More