Génération d'impulsions laser proches du cycle optique en durée pour l'interaction laser-matière relativiste à haute cadence - Laboratoire d'Optique Appliquée (LOA) Accéder directement au contenu
Thèse Année : 2022

Generation of near-single-cycle duration pulses for relativistic laser-matter interaction at high repetition rate

Génération d'impulsions laser proches du cycle optique en durée pour l'interaction laser-matière relativiste à haute cadence

Marie Ouillé

Résumé

This experimental thesis was essentially conducted at Laboratoire d’Optique Appliquée in Palaiseau (France), on a laser system capable of delivering near-single-cycle duration pulses containing a few mJ of energy at 1kHz repetition rate: the Salle Noire 2. This laser is a Titanium:Sapphire double CPA system with a nonlinear filter in between (based on the crossed polarized wave generation effect) for temporal contrast enhancement, followed by a stretched-flexible hollow-core-fiber based post-compression stage. Using this system, we study laser-matter interaction in the relativistic regime at high repetition rate. We can, on one hand, in gas jets, accelerate electrons in the wakefield of the laser up to several MeVs; and on the other hand, by interacting with plasma mirrors, generate high order harmonics which are associated to bright attosecond pulses in the time domain. Despite the technological prowess in these experiments, the properties of the XUV and electron beams thus generated remain scarcely compatible with the main applications downstream. Following up on previous works in Salle Noire 2, the objective of this thesis was to obtain beams with stable properties, which was achieved by making the laser system more stable and reliable, as well as implementing a fast carrier-envelope phase control loop. By varying the carrier-envelope phase of the laser pulses, we could generate XUV continua/isolated attosecond pulses by forming a relativistic-intensity temporal gate at the surface of the plasma mirror, and also produce electron beams exhibiting stable energy and angle of emission, by controlling the electron injection within the plasma accelerator. Additionally, different regimes of interaction with plasma mirrors were experimentally investigated, such as wakefield acceleration of electrons in long plasma density gradients, and the acceleration of protons on the target’s front side (onto which the laser impinges) along the target no rmal direction, in order to measure new observables (electron energy spectra, proton beam divergence) and thus gain deeper insights into the laser-plasma dynamics.
Cette thèse expérimentale s’est essentiellement déroulée au Laboratoire d’Optique Appliquée à Palaiseau (France), sur un système laser capable de générer des impulsions proches du cycle optique en durée avec des énergies de plusieurs mJ à une cadence de 1 kHz : la Salle Noire 2. Ce système laser Titane:Sapphire est double CPA avec un filtre non-linéaire entre les deux étages (basé sur la génération d’onde de polarisation croisée ou ‘XPW’) pour améliorer le contraste temporel, suivi d’un étage de post-compression dans une fibre flexible étirée à cœur creux. Grâce à ce système, nous étudions l’interaction laser-matière en régime relativiste à haute cadence. Nous parvenons, d’une part, dans des jets de gaz, à accélérer des électrons dans le sillage du laser jusqu’ à une énergie de quelques MeV; et d’autre part, par interaction avec des miroirs plasma, à générer des harmoniques d’ordres élevés qui sont associées dans le domaine temporel à des impulsions attosecondes. Malgré la prouesse technique de ces expériences, les propriétés des faisceaux XUV et d’électrons ainsi générés restent encore peu compatibles avec des applications phares en aval. À la suite de travaux précédents en Salle Noire 2, l’objectif de cette thèse était d’obtenir des faisceaux aux propriétés stables, ce qui a été accompli en rendant le système laser plus stable et fiable, ainsi qu’en implémentant une boucle de contrôle rapide de la phase enveloppe-porteuse des impulsions laser. En variant la phase enveloppe-porteuse, nous avons ainsi pu générer des impulsions attosecondes uniques en formant une porte temporelle d’intensité relativiste à la surface du miroir plasma, et aussi produire des faisceaux d’électrons stables en énergie et en direction, en contrôlant l’injection d’ électrons dans l’accélérateur laser-plasma. De plus, différents régime d’interaction avec les miroirs plasma ont été étudiés expérimentalement, tels que l’accélération d’électrons dans les longs gr adients de densité plasma, et l’accélération de protons en face avant de la cible (la face sur laquelle le laser est incident) le long de la direction normale à la cible, afin de mesurer de nouvelles observables (spectre d’énergie des électrons, divergence des faisceaux de protons) et ainsi mieux comprendre la dynamique d’interaction laser-plasma.
Fichier principal
Vignette du fichier
108268_OUILLE_2022_archivage.pdf (38.02 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03957608 , version 1 (26-01-2023)

Identifiants

  • HAL Id : tel-03957608 , version 1

Citer

Marie Ouillé. Génération d'impulsions laser proches du cycle optique en durée pour l'interaction laser-matière relativiste à haute cadence. Plasmas. Institut Polytechnique de Paris, 2022. Français. ⟨NNT : 2022IPPAE007⟩. ⟨tel-03957608⟩
159 Consultations
18 Téléchargements

Partager

Gmail Facebook X LinkedIn More