Spectral properties of the Bloch–Torrey operator in three dimensions - Physique de la matière condensée (PMC)
Article Dans Une Revue Journal of Physics A: Mathematical and Theoretical Année : 2024

Spectral properties of the Bloch–Torrey operator in three dimensions

Résumé

We consider the Bloch–Torrey operator, − Δ + i g x , that governs the time evolution of the transverse magnetization in diffusion magnetic resonance imaging (dMRI). Using the matrix formalism, we compute numerically the eigenvalues and eigenfunctions of this non-Hermitian operator for two bounded three-dimensional domains: a sphere and a capped cylinder. We study the dependence of its eigenvalues and eigenfunctions on the parameter g and on the shape of the domain (its eventual symmetries and anisotropy). In particular, we show how an eigenfunction drastically changes its shape when the associated eigenvalue crosses a branch (or exceptional) point in the spectrum. Potential implications of this behavior for dMRI are discussed.
Fichier principal
Vignette du fichier
2312.04200.pdf (3.66 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04749296 , version 1 (23-10-2024)

Licence

Identifiants

Citer

Denis S Grebenkov. Spectral properties of the Bloch–Torrey operator in three dimensions. Journal of Physics A: Mathematical and Theoretical, 2024, 57 (12), pp.125201. ⟨10.1088/1751-8121/ad2d6d⟩. ⟨hal-04749296⟩
15 Consultations
2 Téléchargements

Altmetric

Partager

More