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Stenotrophomonas maltophilia is an aerobic, non-fermentative Gram-negative bacterium widespread in the environment. S.
maltophilia Sm777 exhibits innate resistance to multiple antimicrobial agents. Furthermore, this bacterium tolerates high levels
(0.1 to 50 mM) of various toxic metals, such as Cd, Pb, Co, Zn, Hg, Ag, selenite, tellurite and uranyl. S. maltophilia Sm777 was able to
grow in the presence of 50 mM selenite and 25 mM tellurite and to reduce them to elemental selenium (Se0) and tellurium (Te0)
respectively. Transmission electron microscopy and energy dispersive X-ray analysis showed cytoplasmic nanometer-sized
electron-dense Se0 granules and Te0 crystals. Moreover, this bacterium can withstand up to 2 mM CdCl2 and accumulate this metal
up to 4% of its biomass. The analysis of soluble thiols in response to ten different metals showed eightfold increase of the
intracellular pool of cysteine only in response to cadmium. Measurements by Cd K-edge EXAFS spectroscopy indicated the
formation of Cd-S clusters in strain Sm777. Cysteine is likely to be involved in Cd tolerance and in CdS-clusters formation. Our data
suggest that besides high tolerance to antibiotics by efflux mechanisms, S. maltophilia Sm777 has developed at least two different
mechanisms to overcome metal toxicity, reduction of oxyanions to non-toxic elemental ions and detoxification of Cd into CdS.
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INTRODUCTION
Stenotrophomonas maltophilia is an aerobic, non-fermentative Gram-

negative bacterium widespread in the environment. This species

constitutes one of the dominant rhizosphere inhabitant, frequently

isolated from the rhizosphere of wheat, oat, cucumber, maize,

oilseed rape, and potato [1–4]. S. maltophilia shows plant growth-

promoting activity as well as antagonistic properties against plant

pathogens. It is currently being studied for its biological control of

plant pathogens and was therefore utilized for the development of

biopesticides [5]. S. maltophilia is also able to degrade xenobiotic

compounds [6,7], to detoxify high molecular weight polycyclic

aromatic hydrocarbons [8], possessing therefore a potential for soil

decontamination (bioremediation). This bacterium was also increas-

ingly described as an important nosocomial pathogen in debilitated

and immunodeficient patients [9,10], as well as associated with a

broad spectrum of clinical syndromes, e.g. bacteraemia, endocardi-

tis, respiratory tract infections [11]. S. maltophilia displays intrinsic

resistance to many antibiotics, making selection of optimal therapy

difficult. The mechanisms underlying this multiresistance to drugs

seem to result from a combination of reduced permeability [12], and

expression of efflux pumps. Two RND efflux systems have been

identified, SmeABC [13] and SmeDEF [14,15].

Considering on one hand the rhizospheric origin of various

opportunistic pathogens [16] including S. maltophilia and, on the

other hand, the description of horizontal gene transfers in the

rhizosphere [17], the tolerance of this bacterium to a wide range of

toxic oxianions and metals must be addressed.

In the present study, we evidenced the tolerance of the strain

Sm777 that belongs to S. maltophilia species, to very high

concentrations of various toxic metals, especially cadmium, selenium

and tellurium, involving two different tolerance mechanisms.

RESULTS AND DISCUSSION
The strain Sm777 was isolated as a culture contaminant associated

to Pseudomonas strains and was revealed in a contest of heavy metal

tolerance studies. This rod-shaped bacterium was persistent in

cultures containing a high concentration of cadmium, and was

identified as a Stenotrophomonas maltophilia by 16S rDNA sequencing.

The sequence analysis (using the BLAST database of the National

Center for Biotechnology Information; [http://www.ncbi.nlm.nih.

gov]) showed that strain Sm777 matched 99.5% with 16S rDNA

of the S. maltophilia LMG 958T (accession nu DQ469587).

MICs of drugs and heavy metals
S. maltophilia Sm777 was able to grow during 16 h in the presence of

500 mM CdCl2, 20 mM tellurite or 50 mM selenite without any

significant increase of the lag phase. It is worthnoting that strain

Sm777 also grew to a high density (109 cfu.ml21) in the presence of

high concentrations of other heavy metals (0.1 mM CoCl2, 5 mM

CuSO4, 4 mM ZnSO4, 10 mM NiSO4, 0.05 mM HgCl2, 0.02 mM

AgNO3, .1 mM uranyl, and 5 mM Pb(NO3)2). Moreover, this

bacterium was resistant to a wide range of antibiotics, such as

kanamycin (50 mg.ml21), gentamycin (100 mg.ml21), tetracycline

(50 mg.ml21), and 50 mg.ml21 of nalidixic acid. These may suggest
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that strain Sm777 overproduces some multidrug resistance (MDR)

efflux pumps that are known to be involved in bacterial resistance to

a wide range of compounds by extruding antibiotics and other toxic

compounds.

Oxianions reduction
To verify the hypothesis of overexpression of efflux systems to get

ride of drugs and heavy metals, we analysed and localized the

elemental composition of bacteria grown in the presence of tellurite

and selenite, by using Energy Dispersive X-ray Spectroscopy (EDX)

in conjunction with Transmission Electron Microscopy (TEM) or

Environmental Scanning Electron Microscopy (ESEM).

The chemical microanalysis (TEM-EDX) of reddish colonies of

strain Sm777 grown in the presence of selenite revealed

cytoplasmic electron-dense Se0 granules (Fig. 1A). No detectable

extracellular particles were observed. The intracellular Se0

granules strongly suggest that selenite tolerance of strain Sm777

is not related to an efficient efflux system. On the contrary, a S.

maltophilia strain isolated from a seleniferous agricultural drainage

pond sediment was shown to transform selenate and selenite and

to form spherical extracellular deposits consisting of Se [18].

TEM-EDX observations of black colonies of strain Sm777 grown

in the presence of tellurite revealed the presence of Te0 crystals in

the cytoplasm and proved that tellurite was taken up by the cells

and was reduced into tellurium in the intracellular compartment

(Fig. 1B).

Active efflux of the metal is a frequently utilized strategy to

produce tolerance by lowering the intracellular concentration to

subtoxic levels. However, our data showing intracellular nanome-

ter-sized particles of elemental selenium or tellurium, suggest that

MDR efflux pumps probably do not mediate the heavy metal

tolerance mechanism in strain Sm777 since tellurite and selenite-

tolerance was associated to an intracellular reduction of these

oxyanions and then by their accumulation.

Tolerance of S. maltophilia to cadmium
ESEM observations coupled to EDX analysis of strain Sm777

grown in the presence of 500 mM CdCl2 revealed the presence of

Cd associated to bacterial cells, but did not allow localizing it

exactly (Fig. 1C). The bacterial Cd content was determined by

ICP-AES as previously described [19]. This analysis revealed an

accumulation of Cd strongly associated with the bacterial cell wall

or incorporated into cells. Hence, this strain was able to

accumulate Cd representing up to 4% of its dry mass. The

presence of a cluster of genes from Gram-positive bacteria

involved in both antibiotic and heavy metal resistance has been

described in S. maltophilia D457R [20]. This cluster contains genes

encoding a macrolide phosphotransferase (mphBM) and a cadmi-

um efflux determinant (cadA). This study indicated a lateral gene

transfer between Gram-positive and Gram-negative bacteria. The

role of these genes in heavy metal tolerance of S. maltophilia has not

been clearly evidenced yet.

Cysteine accumulation in response to cadmium
The role of thiol compounds in the protection against heavy metals

is well known [21]. Moreover, the chemical sequestration of Cd is

thought to occur by coordination of cysteine thiolate groups. For that

reason, we determined the concentration of soluble thiol compounds

of strain Sm777 cells in response to Cd. We noticed an increase of

intracellular cysteine pool when bacteria were grown in the presence

of 500 mM CdCl2 (Fig. 2). Unlike other bacteria or yeast, no

modification of gluthatione content was observed [21]. Moreover, no

modification of the intracellular pool of cysteine was observed in

response to the following metals: NiSO4, CuSO4, Pb(NO3)2, ZnSO4,

CoCl2, HgCl2, AgNO3, tellurite and selenite. The increase of

intracellular pool of cysteine might reduce the bioavailability of Cd.

Park and Imlay [22] have shown that high levels of intracellular

cysteine promote oxidative DNA damage by driving the Fenton

reaction. They actually found that when cysteine homeostasis is

Figure 1. ESEM-EDX and TEM-EDX observations. Microscopic observations and representative energy-dispersive X-ray spectra of electron-dense
particles of S. maltophilia Sm777 cells grown in ten fold-diluted TSB medium solidified with 15 g.l21 agar, and supplemented with metals. (A & B)
Colony shape, TEM-EDX micrographs and spectra of S. maltophilia Sm777 grown in the presence of selenite (10 mM) and tellurite (1 mM). (C) Colony
shape, ESEM-EDX observation and analysis of cells grown in the presence of CdCl2 (500 mM). Arrows on micrographs indicate the presence of
intracellularly localized electron-dense particles of Se and Te, and arrows on spectra indicate metal-specific peak detected.
doi:10.1371/journal.pone.0001539.g001
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disrupted, intracellular cysteine acts as an adventitious reductant

of free iron and thereby promotes oxidative DNA damage.

The toxic effect of Cd is mainly mediated by its high degree of

reactivity with S, O and N atoms in biomolecules. Cysteine promotes

an oxidative stress in cells, however it also protects against Cd toxicity

probably by chelating Cd. The resulting metal thiolate complex

formation may neutralize the toxicity of heavy metal. To deal with

this dilemma, increasing the intracellular cysteine pool, bacterial cells

are potentially exposed to an oxidative stress, but these cysteine

residues may be stabilized by formation of Cd-cysteine complex

decreasing that way the amount of free Cd and free cysteine.

Formation of CdS particles
When strain Sm777 was grown under aerobic conditions on solid

media containing 500 mM CdCl2, it formed yellow colonies

(Fig. 1C). This observation suggested that bacterial cells may have

transformed the Cd(II) into CdS as previously reported for

Klebsiella pneumoniae [23], and for Klebsiella planticola [24]. To test

this hypothesis, we used Cd K-edge EXAFS spectroscopy to probe

the detailed coordination environment of the metal. The EXAFS

spectrum was adjusted using different atomic neighbors around

Cd. The nature, number and distances of atoms surrounding Cd

in the sample are detailed in Table 1 and the calculated and

Figure 2. Soluble thiols analysis. HPLC analysis of nonprotein thiols in S. maltophilia Sm777 grown in TSB/10 without (A) or supplemented (B) with
500 mM of CdCl2. The arrow indicates cysteine peack. N-acetyl-L-cysteine (NAC) was used as an internal standard.
doi:10.1371/journal.pone.0001539.g002
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experimental EXAFS curves are compared in Fig. 3A. EXAFS

modeling indicated that the first coordination sphere of Cd was

composed of four sulfur atoms at 2.50 and 2.64 Å and confirmed the

formation of CdS compounds. EXAFS calculations also indicated

the presence of Cd in the second coordination sphere at 3.42 and

3.68 Å. These Cd-Cd contributions indicated that CdS4 tetrahedra

present in the cell bond to form Cd-S-Cd clusters. The low number

of Cd atoms around each Cd (1.3) suggested that the size of the Cd-

S-Cd clusters is small and can be a mixture of Cd dimers and trimers

as illustrated in Fig. 3B. Thus, Cd-S clusters are formed in the cells

and the low coordination number for the Cd-Cd contributions

suggests that the product is less crystalline than the CdS reference

compound. However, it is not possible to conclude whether these

Cd-S clusters are surrounded by poly-thiols molecules or not.

The mechanism underlying the formation of CdS by strain

Sm777 remains unclear; it is obvious that strain Sm777 formed

CdS under aerobic conditions, whereas the formation of CdS in

Clostridium thermoaceticum is mediated by the production of H2S

under stringent reductive conditions [25]. The aerobic sulfide

production and Cd precipitation by Escherichia coli was possible by

over-expression of the Treponema denticola cysteine desulfhydrase

gene which product converts cysteine to sulfide under aerobic

conditions. However, Cd precipitation as CdS was effective only

when cysteine was added to the growth medium [26], whereas the

production of CdS by strain Sm777 did not require any exogenous

supply of cysteine. The high increase of intracellular pool of

cysteine suggests that the bacterium reorients its metabolism to the

production of cysteine that might be converted to sulfide used for

CdS formation. Cysteine is able to form high-affinity metal ligand

clusters and to promote the formation of CdS particles.

Alonso and colleagues [20] showed that a Stenotrophomonas strain

has acquired a cluster of antibiotic and heavy metal resistance genes

from Gram positive bacteria. Most of these genes are homologues of

genes previously found on Staphylococcus aureus plasmids. In the

present study, we evidenced the high tolerance to various heavy

metals by S. maltophilia Sm777. To our knowledge, this is the first

report indicating the high ability of a member of this species to

tolerate and to detoxify several heavy metals. This bacterial species is

also described as an opportunistic pathogen responsible for

nosocomial infections. The severity of these infections is due to the

virulence factors of the bacteria and to their occurrence in debilitated

patients in whom invasive devices are used. To get more insight in

the different mechanisms of heavy metals tolerance, and to identify

pathogenesis related genes, it would be of great interest to perform a

genome analysis and functional genomic studies of this species.

MATERIALS AND METHODS

Growth conditions
S. maltophilia Sm777 was grown aerobically in an incubating shaker

at 30uC in tenfold diluted tryptic soy broth (TSB/10) (DIFCO

Laboratories, Detroit, USA). For growth on plates, media were

solidified with 15 g.l21 Bacto-agar (DIFCO Laboratories, Detroit,

USA).

Determination of metals and antibiotics maximum

tolerance concentrations
To determine the MTCs (maximal tolerated concentration) for

different heavy metals, bacteria were grown on 10 ml of TSB/10

in the presence of different concentrations of different metals,

CdCl2, NiSO4, CuSO4, Pb(NO3)2, ZnSO4, CoCl2, HgCl2, uranyl

acetate and AgNO3, at 30uC under shaking. The MTCs

corresponded to the highest concentration of each metal at which

growth was still observed [27]. The MTCs for the four antibiotics,

kanamycin, gentamycin, nalidixic acid, and tetracycline were also

determined, and are expressed in mg.ml21. Experiments were

performed in triplicate for each condition.

Analysis of cadmium accumulation
To determine the Cd content of bacterial cells grown in TSB/10

supplemented with 500 mM CdCl2 for 48 h cells were harvested,

Figure 3. Extended X-ray Absorption Fine Structure (EXAFS) Spectroscopy. (A) Comparison between experimental and calculated EXAFS of S.
maltophilia Sm777 strain cells. (B) Modeling of Cd dimers and trimers.
doi:10.1371/journal.pone.0001539.g003

Table 1. Cd atomic environment.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Atomic pair
Interatomic
distance R (Å)

Debye-Waller
parameter (Å)

Number of
atoms Residue

Cd«S 2.50 0.090 3.1 0.02

Cd«S 2.64 0.100 0.9

Cd«Cd 3.42 0.092 0.4

Cd«Cd 3.68 0.110 0.9

Structural parameters of the Cd atomic environment derived from EXAFS
modeling of the Cd K edge EXAFS spectrum of S. maltophilia Sm777 bacterial
cells.
doi:10.1371/journal.pone.0001539.t001..
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rinsed three times using TSB/10 and dried at 55uC for 24 h .

Following addition of 5 ml HNO3 (70%), mineralization was

carried out in a microwave oven (Mars X; CEM Corp., Matthews,

N.C.). Metal content was determined using an inductively coupled

plasma atomic emission spectrometry (ICP-OES device; Varian);

standard solutions were supplied by Merck.

Soluble thiols analysis
Cells were harvested and rinsed with TSB/10 and stored at 280uC
until analysis. Nonprotein thiols were extracted by disruption of cells

by sonication of 5 to 7 mg of frozen bacteria in 0.5 to 0.7 ml of

extraction buffer (6.3 mM diethylenetriamine pentaacetic acid

[DTPA]20.1% [vol/vol] trifluoroacetic acid). Thirty microliters of

100 mM N-acetyl-L-cysteine was added as an internal standard. The

homogenate was centrifuged at 10,0006 g for 15 min at 4uC
(Centromix 1236 V, Rotor 20RT) and the supernatant was filtered

(0.22 mm). The derivatization procedure was modified from

Rijstenbil and Wijnholds [28]. Filtered extracts (125 ml) were mixed

with 225 ml of reaction buffer [0.2 M 4-(2-hydroxy-ethyl)-pipera-

zine-1-propanesulfonic acid pH 8.2 containing 6.3 mM DTPA] and

5 ml of 25 mM monobromobimane dissolved in acetonitrile.

Following 15 min of incubation in the dark at room temperature,

the reaction was stopped by adding 150 ml of 1 M methane sulfonic

acid. The samples were stored at 4uC in the dark until high-

performance liquid chromatography (HPLC) analysis. The bimane

derivatives were separated on a reversed-phase Nova-Pak C18

analytical column (pore size, 60 Å; particle size, 4 mm; dimensions,

3.9 by 300 mm; Waters catalog no. 11695) using two eluents (0.1%

[vol/vol] trifluoroacetic acid in water and acetonitrile) at a flow rate

of 1 ml.min21. Fluorescence was monitored by a Waters 464

detector (lexcitation = 380 nm; lemission = 470 nm). Calibration curves

of glutathione were used in all measurements. Cysteine, GSH and -

glutamylcysteine (-EC) (from Sigma) were used as standard.

ESEM-EDX and TEM-EDX observations
For transmission electron microscopy (TEM), bacterial cells were

harvested from TSA/10 plates containing tellurite (1 mM) or

selenite (10 mM). Cells were then fixed in 2.5% glutaraldehyde

and postfixed with osmium tetroxide in sodium cacodylate buffer.

Dehydration was performed in ethanol and inclusion in epoxy

resin. Ultrathin sections were made using a Reichert ultramicro-

tome. Electron micrographs and chemical microanalyses were

obtained with a Jeol (Tokyo, Japan) 100CX transmission electron

microscope coupled with an energy dispersive X-ray spectrometer

(EDX). Environmental scanning electron microscopy (ESEM)

microscope coupled with an energy dispersive X-ray spectrometer

(EDX) observations were realized on colonies grown on TSA/10

containing 500 mM CdCl2.

Extended X-ray Absorption Fine Structure (EXAFS)

Spectroscopy
Cd K-edge XAS experiments were carried out at the European

Synchrotron Radiation Facility (ESRF, Grenoble-France) on the

FAME (BM30-b) beamline with Si (220) monochromator crystals

using the fluorescence detection mode. The storage ring was

operated at 6 GeV with a current of 200 mA. XAS spectra were

scanned from 100 eV below to 800 eV above the Cd K-edge. The

pre-edge part was extracted from the XANES (X-ray Absorption

Near Edge Structure) region (extended from 26600 eV to

26650 eV). XANES spectra intensity was normalized by fitting the

photoelectric background above the absorption edge with a 2nd

order polynomial function. The EXAFS (Extended X-ray Absorp-

tion Fine Structures) data reduction was done using a series of

programs developed by Michalowicz [29] based on standard

procedures [30]. The extracted EXAFS was k2 weighted (with

k = wave vector) to enhance the high-k region and Fourier

transformed over the k range 2.4 to 14–15 Å21, to R space using

a kaiser apodization window with t = 2.5. The resulting pseudo-

Radial Distribution Functions (RDF) are uncorrected for phase shift

leading to a shift of the peaks by 0.3–0.4 Å. Separate peaks in the

RDF corresponding to successive shells of neighboring atoms around

Cd were isolated by Back-Fourier Transformation (BFT) for single or

multiple shell analysis. The analysis of partial c(k) was based upon the

curved wave EXAFS formalism [31] in the single scattering

approximation. Curve fitting was performed with a non linear

least-square procedure, and phase (fbackscatterer(k), dcentral atom(k) ) and

amplitude (|fbackscatterer(q, k, R)|) functions used were calculated with

FEFF8 32]. Phase and amplitude functions of Cd-S and Cd-Cd

atomic pairs were tested on reference compounds (Cd(OH)2, CdS).
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