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Abstract: We discuss the peculiarities of the structure of the interface between a metal and a stable
colloidal dispersion of charged nanoparticles in an electrolyte. It is demonstrated that a quasi-2D
ionic structure of elevated density arises in its vicinity due to the effect of electrostatic image forces.
The stabilized colloidal particles, being electroneutral and spatially distributed objects in the bulk of
the electrolyte and approaching the interface, are attracted to it. In their turn, the counterions forming
their coat partially retract into the 2D-layer, which results in an acquisition by the colloidal particle of
the effective charge eZ∗ � e and which, together with its mirror image, creates the electric dipole.
The formed dipoles, possessing the moments directed perpendicularly to the interface, form the gas
with repulsion between particles. The intensity of this repulsion, evidently, depends on the value of
the effective charge eZ∗ acquired by the nanoparticle having lost a number of counterions. It can be
related to the value of the excess osmotic pressure Posm measured in the experiment. On the other
hand, this effective charge can be connected by means of the simple geometric consideration with the
structural charge eZ of the nanoparticle core being in the bulk of the electrolyte.

Keywords: seebeck effect; colloids; thermodiffusion

1. Introduction

In recent years, liquid thermoelectric materials are emerging as a cheaper alterna-
tive to the semiconductor-based solid counterpart for low-grade waste heat recovery
technologies [1–3]. Incorporation of nanometer-sized colloidal particles can considerably
change the transport properties of the host electrolyte. For example, a breakthrough in the
enhancement of the Seebeck signal has been achieved by means of dispersion of charged
colloidal particles in such systems [4,5].

In view of thermocell applications, a special attention requires the study of the behavior
of colloidal particles being in the vicinity of the electrodes. Various experiments [6–9]
indicate that colloidal particles are attracted by the metal–electrolyte interface. Herewith,
its origin by definition is supposed to be of the Van der Waals type, which, indeed, always
results in attraction of the neutral particles to the interface. Yet, this kind of attraction
should be preserved between colloids also along the metal–electrolyte interface. The latter
statement contradicts the experiment: the interaction between colloidal particles localized
in the vicinity of the interface has the character of repulsion [6–9].

The alternative to the Van der Waals mechanism of such an interaction of the colloidal
particle with the metal–electrolyte interface could be the attraction to its electrostatic mirror
image. The method of mirror charges is widely used in electrostatics to simplify calculations
of the electric field distribution of a charge placed in the vicinity of an interface between two
dielectric media. It allows one to automatically satisfy the boundary conditions imposed
by Maxwell equations on electric field intensity and the electrical induction vectors at the
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interface. It is notorious that this elegant method was proposed by W. Thomson (later
Lord Kelvin) [10] for more than a decade before Maxwell formulated his electrodynamics.
In the case under consideration of the metal–electrolyte interface, the method of mirror
charges requires modification, since the potential of the electric field in the bulk of the
electrolyte ceases to be a harmonic function: its properties here are defined by the Poisson
equation. A corresponding extension of the theory was proposed at the beginning of XX-th
century in the seminal papers of Wagner [11] and Onsager-Samaras [12], where it was
found that the image force today bearing their name, is noticeably transformed with respect
to dielectric media. Recently, the ideas of Wagner and Onsager-Samaras were developed by
the authors on purpose to explain the details of the Seebeck effect in colloidal electrolytic
solutions [13]. The Wagner–Onsager–Samaras mechanism, developed for the point-like
charges and for the colloidal particles, is valid at the relatively large distances from the
metal–electrolyte interface. Yet, its dominance ceases in the boundary domain where the
direct colloid’s contact with the metal surface occurs. The origin and details of namely
these contact interactions are discussed in this paper.

Point in fact, when the colloidal particles are neutral, they cannot exist independent in
a dilute solution. Rather, they coagulate due to the Van der Waals forces acting between
them. In order to prevent such coagulation processes, one can immerse individual colloidal
particles of bare radius R0 in the electrolyte (specific for each kind of particle), such that their
surface species dissociate in the electrolyte, the counterions being freely dissolved while
the NPs keep surface ions (e.g., hydroxyl groups, citrate, etc. [14–16]), resulting in a very
large structural charge eZ (|Z| � 10). Its sign can be either positive or negative, depending
on the surface group type. If the concentration of free ions in the electrolyte (ionic strength)
is small enough [16], the obtained dispersion is considered as colloidally stabilized.

The large structural core charge attracts counterions from the surrounding solvent,
creating an electrostatic screening coat of the order of Debye length λ0 containing an
opposite charge −eZ (see Figure 1a). Consequently, such complexes become neutral and
their size can be estimated as the sum of the bare radius of charged core and the effective
thickness of the screening coat: 2(R0 + λ0). In these conditions, nanoparticles approaching
within the distances δr = r − (R0 + λ0) ≤ λ0 between them begin to repel each other,
preventing coagulation. The corresponding theory of stabilized electrolyte was developed
in Refs. [17–19] and is called the DLVO theory. A typical manifestation of the stabilization
phenomenon occurs in very dilute dispersions, where the system can be considered as a
perfect gas of NPs, especially in the region of concentrations where

n�(λ0 + R0)
3 � 1, (1)

where n� is the density of the colloidal particles. It is important to note that the stabilized
solution is homogeneous under the condition described in Equation (1).

Here, the structure of the colloidal particle, immersed in the bulk of an electrolyte, is
spherically symmetric and is determined by means of the solution of the Poisson equa-
tion with the zero boundary conditions at infinity [20]. Close to the interface, a non-
homogeneous electric field in the electrolyte is formed due to the redistribution of ions.
As a consequence, the colloidal complexes are pulled into the region of stronger electric
field; the boundary conditions change and the electrostatic problem has to be revisited.
Here, the difference between the electrostatic forces of attraction to the metallic electrode
acting on the charged counterions of the screening coat and on the colloidal particle core
enters in play. Indeed, such attraction forces are very different for the weakly charged
counterions in the coating layer and the strongly charged (eZ) particle core of the colloid.
Correspondingly, the counterions partially leave the coat (see Figure 1b), which results
in the acquisition by the colloidal particle of the effective charge eZ∗ � e and which,
together with its mirror image, creates the electric dipole [21]. These dipoles, possessing the
moments directed perpendicularly to the interface, form a 2D gas with repulsion between
particles. The intensity of this repulsion, evidently, depends on the value of the effective
charge eZ∗ acquired by the nanoparticle that lost some number of counterions. Namely,
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such a repulsion is demonstrated by the abovementioned experiments [6–9] performed
with colloidal solutions on a metal substrate. On the other hand, this charge can be related
by means of a simple geometric consideration to the structural charge eZ of the nanoparticle
core being in the bulk of the electrolyte.
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Figure 1. The schematic presentation of the multiply-charged colloidal particle surrounded by the
cloud of counterions: (a) in the bulk of electrolyte; (b) in the vicinity of electrolyte–metal interface. In
(a) is presented the standard scheme of the colloid structure assumed in the DLVO theory. Its core
of the radius R0 carries the charge eZ, while λ0 appears in the DLVO theory as the characteristic
screening length. The “Stern layer” is the auxilary characteristics of the screening coat, which is
determined in the early theories [22,23], as the size of the region of elevate electrostatic energy
eϕ � kBT. The screening coat of the volume 4π

3 [(R0 + λ0)
3 − R3

0] possesses the opposite charge
−eZ. Hence, the entire colloidal particle in the DLVO model is neutral. In (b), the colloidal particle is
schematically shown in contact with the electrode (metallic plane). Here, the counterions previously
contained in the spherical segment partially leave the coat (see b). This process results in acquisition
by the colloidal particle of the effective charge eZ∗ (see Equation (8)), which, together with its mirror
image, creates the electric dipole. Note that the effective charge considered here is that of static
colloidal particles, to be distinguished from the dynamic effective charge of moving particles [4].

The structural nanoparticle core charge eZ � e is the important characteristic of the
solution containing the stabilized nanoparticles. Yet, in the frameworks of the existing
theories based on the bulk properties of the solution, it does not appear explicitly either in
the expression for conductivity [20], nor for the Seebeck coefficient [13]. Below, we propose
the mechanism that explains the observed attraction of colloidal nano-particles to the metal
surface and the nature of their repulsion along the latter. Finally, we discuss the possibility
of determination of the value of core charge eZ � e exploiting the properties of the
two-dimensional system of colloids, which occurs at the metal–colloidal solution interface.

2. The Structure of Interface between a Metal and Stabilized Electrolyte

Let us start from the standard electrostatic problem of the interaction between the point
charge Q, placed in the insulator semi-space (with dielectric constant ε), with the metallic
semi-space. It can be replaced by the attraction of the charge to its mirror image [10,24]:

Fε(z) = −
Q2

4εz2 , (2)

where z is the distance from the point charge Q to the plane.
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When the first semi-space is filled with an electrolyte, the electrostatic image force Fε

(Equation (2)) is screened at the distances of the order of the Debye length as one moves
away from the plane. As it was demonstrated by Wagner, Onsager, and Samaras [11,12]:

FWOS(z) = Fε(z) exp
(
− 2z

λ0

)
. (3)

The corresponding electrostatic energy of the charge Q in this configuration acquires
the form

UWOS(z)=−
∫ ∞

z
FWOS(x)dx = − Q2

2λ0ε
Γ
(
−1,

2z
λ0

)
, (4)

where Γ(s, x) is the upper incomplete gamma function. In other words, a charged point-like
particle located in the electrolyte at distances exceeding the Debye length λ0 from the
electrode interacts exponentially weaker with it.

Let us face the behavior of a colloidal particle in the vicinity of the interface between
a metal and electrolyte. Until the distance from the center of colloidal particle to the
interface z noticeably exceeds the Debye length (z� λ0), the latter keeps its integrity and
electroneutrality. Approaching the interface (z < λ0) this complex object loses part of
its screening counterions and acquires a finite number of charges. The framework of the
Poisson equation with infinite boundary conditions [20] is no longer applicable here. The
finite colloidal particle core size R0 serves as the natural cut off of the image force potential
singularity at small distances ( z < R0) [25].

In the previous work of the authors [13], the value of the colloidal particles’ surface
concentration N� was found. This was performed by means of the integration of the
difference between the Poisson-Boltzmann distribution of the colloids in the modified (by
Oshima, see [25])) UWOS(z) potential and their homogeneous density n�:

N�= n�

{∫ R0+λ0
R0

(
exp

[
Z2e2Γ

(
−1,2+ 2R0

λ0

)
λ0kBTε exp

(
− z−R0

λ0

)]
− 1

)
dz

+
∫ ∞

R0+λ0

(
exp

[
Z2e2

2λ0kBTε Γ
(
−1, 2z

λ0

)]
− 1
)

dz
}

.

(5)

The conservation of the number of colloidal particles in dispersion implies the condi-
tion

N = 2N� · S + n� · S · L = const, (6)

where S is the surface of the interface, L is the linear size of the sample, and N is the total
number of colloids introduced in the solution. The latter retains its value in the process of
mutual adjustment between two colloidal fractions approaching equilibrium.

Definition (5), together with the requirement (6), contains all the necessary information
concerning the properties of the 2D colloidal fraction in terms of the 3D homogeneous density
n� of colloids with an arbitrary ratio λ0/R0. Yet, the value of the charge 0 ≤ eZ∗(z) ≤ eZ ac-
quired by a colloidal particle, as a result of the partial lost of counterions from the coat, remains
indefinite.

Far from the interface, the colloidal gas is rarefied (the condition (1) is satisfied); the
bulk physical characteristics of the colloidal solutions (osmotic pressure [26,27], conduc-
tivity [20], and the Seebeck coefficient [13]) were found to be independent of the value
of the core structural charge eZ. As the density of colloidal particles increases and the
criterion (1) approaches its upper limit, the effective charge of the colloidal core enters in
the gamble [28].

In turn, in the vicinity of the interface, the colloidal particles are localized at the
distances of the order of R0 from it, and in view of their partial loss of the counterions, the
role of the effective charge eZ∗(z) cannot be ignored at any colloidal concentration n�.

For further discussion, it is crucial to find the binding energy of the colloidal particle
E� in the vicinity of the metallic plane. In Ref. [25], Ohshima performed the study of its
dependence on the distance to the interface (z) for an arbitrary relation between R0 and
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λ0. One can observe from Figure 4 of Ref. [25] that E�(z) remains negative for all z and
reaches its minimum when the core of the colloidal particle touches the plane: i.e., z = R0
(see Figure 1b).

The analysis of the binding energy E�’s dependence on the colloid’s core size, as it can
be observed from the Ohshima’s numerical results, demonstrates that this energy depends
on R0 much more strongly than it could be expected for the Coulomb interaction of the
point charge Q with its electrostatic image (EQ = Q2/2R0). This fact can be explained
taking into consideration that the acquired by the colloid effective charge eZ∗ itself depends
on the value of R0.

Operating in geometrical terms, one can identify eZ∗ with the charge of the spherical
segment cut by the plane z = R0 from the screening coat (see Figure 1b). The values of the
segment chord a and the corresponding volume V∗ are determined by (see Figure 1b):

a =
√

2λ0R0 + λ2
0, V∗ = πλ2

0(R0 +
2λ0

3
). (7)

The corresponding value of the acquiring effective charge is determined by the ratio of
V∗ and the full volume of the counterions coat 4

3 [(R0 +λ0)
3−R3

0] (see Figure 1a). Therefore,
indeed, in our simple geometric model, the acquired effective charge eZ∗ depends on the
colloid core radius:

eZ∗ = eZ
(3R0 + 2λ0)λ0

4[3R2
0 + 3R0λ0 + λ2

0]
, (8)

and the binding energy takes form:

E�=−
e2Z∗2

2εR0
=− e2Z2

32εR0

(3R0 + 2λ0)
2λ2

0
[3R2

0 + 3R0λ0 + λ2
0]

2
. (9)

This expression demonstrates that the binding energy of the large colloid (R0 � λ0) in
the vicinity of the metallic plane decreases with the increase of its size much more rapidly
than for the point charge (compare E� ∼ R−3

0 and EQ ∼ R−1
0 ).

One can observe that the Debye length enters in the binding energy (Equation (9)) in
the form of the dimensionless parameter λ0/R0, exactly like it appears in the Ohshima’s
theory [25]. It is important to stress the independence of λ0 on the value of the structural
charge over a wide range of eZ.

To confirm the correctness of our model, we calculated E�(R0) according to
Equation (9) in the region R0 ≤ λ0 and found good agreement with the results of Oshima’s
numerical analysis for three values: R0 = 0.1λ0; 0.5λ0; 1.0λ0 (see Figure 2). Extrapolat-
ing this equivalence, we also apply below our model for the range of colloid core sizes
exceeding the Debye length: R0 ≥ λ0.

The surface concentration N� of colloidal particles in this interface layer can be
evaluated by equating the corresponding chemical potential with that of one of the colloids
in bulk

µs = µb. (10)

Let us imagine the box with the face surface S and the height R0 + λ0, built at the
interface. First, let us fill it with the colloidal particles’ gas without electrostatic interaction
with the metallic semi-space (its density will be n�). The corresponding chemical potential
µb of the colloidal particle in the approximation of a weak electrolyte is determined by the
total number of particles in the box [19]:

µb = kBT ln[2n� · S · (R0 + λ0)] + ψb(P, T), (11)

where ψb(P, T) is some function of pressure and temperature (by means of the factor 2
under the logarithm, we took into account the availability of the two electrodes). Now, let us
switch on the electrostatic interactions. The surface concentration of the colloidal particles
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will become N�, and consequently the chemical potential µs of the particle localized in the
interface layer can be written as

µs = kBT ln(2N� · S) + ψs(P, T), (12)

with ψs(P, T) as another function of pressure and temperature. Comparing Equations (11)
and (12) and recognizing that the difference of the additive functions is determined by
the colloidal particle binding energy in the interface layer (ψs(P, T)− ψb(P, T) = E�), one
finds:

N� = n�(R0 + λ0) exp
(
|E�|
kBT

)
. (13)

By the sign |...| we stressed that the binding energy E� is negative (see Equation (9)),
i.e., the argument in the activation exponent is positive. One can see that the Equation (13)
qualitatively resembles the cited above relation (5), yet in the former we have succeeded
in avoiding cumbersome integration. Let us recall that all these considerations were
performed with the assumption R0 ≥ λ0.

*
*

*

0.0 0.5 1.0 1.5 2.0
-12

-10

-8

-6

-4

-2

0

R0 /λ0

E
⊙~

Figure 2. Binding energy Ẽ� (taken from Equation (9) and normalized to E�(R0/λ0 = 0.5)) as the
function of the ratio R0/λ0. The stars correspond to the numeric values of the binding energy taken
from Oshsima’s paper [25] at points R0/λ0 = 0.1; 05; 1.0.

The normalization relation (6) between N� and n� allows one to track down the
process of filling the interface layer by partially undressing colloidal particles as their
number in the cuvette increases (for instance, such a process occurs at the beginning of the
steady stage of the Seebeck effect in [4,13]). One can see that Equations (10)–(13) confirm
the observed saturation effect (N�(N)→ const).

3. Determination of the Effective Colloidal Charge

As it was already mentioned in the Introduction, the structural charge eZ is the
important characteristic of the solution containing the stabilized nanoparticles. Yet, the
study of its bulk properties hardly allows one to determine this physical value. Indeed, the
equation of the state of the 3D colloidal gas relates the corresponding osmotic pressure Pb
to the dimensionless concentration φ = n�V� [26,27]:

Pb(φ)V�
kBTφ

=
1 + φ∗ + φ∗2 − φ∗3

(1− φ∗)3 . (14)
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Here, V� = 4
3 πR3

0 is the volume of the colloidal particle and φ∗ = φ(1 + λ0/R0)
3 is

the effective concentration accounting for the screening coat. One can observe that the
structural charge eZ does not enter in Equation (14), as in its derivation the interaction
between the colloidal particles was considered in the solid spheres’ approximation.

The situation turns out to be quite different for the equation of state of the 2D colloidal
gas localized in the interface layer. The acquired effective charge eZ∗ can be determined
relating the concentrations N� to the observable on the experiment osmotic pressure Ps
by means of the virial expansion. As it was discussed above, here, the colloids form the
dipoles with their electrostatic images. These dipoles are oriented perpendicularly to the
interface plane and hence, repel each other. It is essential that the potential energy of this
interaction is positive and can be presented as a function of the distance between their
centers [24]:

U(r) =
8R2

0Z∗2e2

εr3 . (15)

In this case, in full agreement to the virial expansion theory [19], the corresponding
osmotic pressure Ps is determined by the formula explicitly accounting for the interac-
tion effects:

Ps = N�T

{
1 +

N�
2

∫ [
1− exp

(
−

8e2R2
0Z∗2

εr3kBT

)]
dS

}
, (16)

where dS = 2πrdr. The last integral can be easily calculated:

Ps = N�kBT

{
1 + 4πN�

3

[
e2R2

0Z∗2

εkBT

]2/3 ∫ ∞
0 [1− e−y]

dy
y5/3

}

≈ N�kBT

[
1 + 16πN�

3

(
e2R2

0Z∗2

εkBT

)2/3
]

,

(17)

where the value of the integral is 4.01. Hence, the measurable deviation of the 2D osmotic
pressure ∆Ps from its ideal value Ps0 = N�kBT allows one to determine the value of the
acquired effective charge of the colloidal particle (eZ∗) and consequently to restore the
value of the structural charge of its core in the bulk:

eZ =
2(3R2

0 + 3R0λ0 + λ2
0)

R0λ0(3R0 + 2λ0)

(
∆Ps

Ps

)3/4 (εkBT)1/2

(πN�)
3/4 . (18)

According to the Ref. [8], an alternating external electric field E⊥(ω), applied perpen-
dicularly to the metal–electrolyte interface, modulates the interaction between the forming
2D gas colloids. Looking at Equation (17) one recognizes that the compressibility of the
2D colloidal gas should also oscillate with the same frequency ω, following the perturbing
electric field E⊥(ω). As a consequence, one should expect the existence of the paramet-
ric resonance for acoustic waves propagating along the metal–electrolyte interface in the
interacting 2D gas of the colloidal particles.

Indeed, the density perturbation δN�(T) obeys the wave equation

∂2δN�
∂2t

− S2∆δN� = 0, (19)

with S2 = ∂Ps(ω)/∂ρ�, where ρ� = M�N�(T), and Ps is determined by Equation (17).
The parametric resonance in the two-dimensional oscillations of the colloids’ density (an
analogue of sound waves in air) arises when the doubled frequency of the electric field 2ω
coincides with one of the eigen-frequencies of Equation (19).
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4. Discussion

We demonstrated that the colloidal particles, being globally neutral in the electrolyte
bulk thanks to their layer of counterions, acquire the finite charge approaching the metal–
electrolyte interface. This circumstance noticeably effects the major part of the colloidal
system properties.

A. Localization of the colloidal particles at the electrolyte–metal interface is easily
observable visually [6–9]. The analysis of the activation temperature dependence of their
surface concentration N�(T) at a fixed value of the colloidal particles number N in solution
(see Equations (6) and (13) allows one to extract the value of the localization energy E� and,
consequently, the value of the colloidal particle effective charge eZ∗.

B. The virial equation of the state of a dilute colloidal solution (14) lies in the basis
of the DLVO theory. It is also used for the analysis of the hydrodynamic fluctuations
of various origins [29]. The consequences of its non-linearity in the 3D case find their
experimental confirmation in the measurements of the form-factor and its relationship to
the compressibility of the gas [27]. Considerable progress is achieved in the studies of
the wave scattering at a rough surface of two dielectrics, which present a special request
for radio physics (this is also wave scattering at the surface of seas and oceans; see, for
example [30]). Knowledge of the 2D equation of state (17) will allow one to relate the
intensity of light scattered by the interface to the properties of the rough metal–electrolyte
boundary (roughness is associated with the presence of charged colloidal particles on a flat
metal boundary). Such kinds of experiments studying the light scattering on surfaces with
2D colloids are still lacking.

C. The internal electric field in the bulk of a large enough (2d � λ0) flat electrolyte
capacitor is screened by the ions. The non-zero field occurs only within the Debye layers (of
the thickness λ0) along the capacitor plates (see Ref. [21]); namely, the latter determines the
capacitance of the device. According to Figure 3, the colloidal particles of the dimensions
λ0 ≤ R0 � d, localized at the metallic boundary, pierce the holes of the radius a/2 (see
Equation (7)) in a flat Debye layer providing an anomalous value of the capacitance C0. As
a consequence, the capacitance of a capacitor with a 2D system of colloids of a density N�
at the metal–electrolyte boundaries decreases, as

δC
C0
≈ −πa2N�/4 (20)

which allows one to directly measure the density N� and parameter a.

+eZ*

+eZ* +eZ*

+eZ*

– eZ*

LL
L

– eZ* – eZ*
– eZ*

Figure 3. Interacting dipole gas in the vicinity of the interface. The counterions partially leave the
coats of colloidal particles, which leads to acquisition of the effective charge eZ∗ � e by the latter.
Formed in this way, charged complexes, together with their mirror images, set up the electric dipoles.
These dipoles, possessing the moments directed perpendicularly to the interface, constitute a 2D gas
with repulsion between particles. The average distance between the dipoles is L ∼ N−1/2

� .

In summary, the discussed phenomenon of the colloidal particle accumulation at the
metal–electrolyte interface interestingly diversifies the physics of dilute colloidal solutions.
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The image forces at the boundaries of an electrolyte noticeably affect the entire range of
contact phenomena. For example, their bright manifestation is the electrostatic renormaliza-
tion of the surface tension in dilute electrolytes, which was studied in detail by the authors
of Refs. [11,12]. Other series of phenomena related to the electrostatic image forces are
the little explored adsorption of a charged fraction of the electrolyte at a solid boundary
with the formation of the double Debye layers [31]. The role of electrostatic forces acting
on colloidal particles in thin capillaries with dielectric walls also presents a challenging
problem to be investigated.
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