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ABSTRACT

Reactive systems are made of programs that permanently interact with their environment. Debuggers
generally provide support for data and state inspection, given a sequence of inputs. But, because the reactive
programs and their environments are interdependent, a very useful feature is to be able to go the other
way around; namely, given a state, obtain a sequence of inputs that leads to that state. This problem is
equivalent to the general verification of safety properties, which is notoriously undecidable in presence of
numeric variables. However, a lot of progress has been done in recent years through the development of
model checking and abstract-interpretation-based techniques.

In this article, we take advantage of those recent advances to implement a fully automatic state reaching
capability inside a debugger of reactive programs. To achieve that, we connect a debugger, a verification tool,
and a testing tool. One of the key contributions of our proposal is the proper handling of numeric variables.

KEYWORDS: automated debugging of reactive programs; state reaching; input sequence generation; test;
counter-example generation; abstract interpretation

1 Introduction

Debugging reactive programs. A reactive system can be viewed as an infinite loop, in which the
program first reads inputs from its environment, then computes and emits some outputs towards
the environment, while updating its internal memory. This intrinsic closed-loop behaviour of reactive
systems makes the process of debugging particularly difficult, because:

• for each step of the execution, the user must provide values for all inputs, mimicking the be-
haviour of the environment. This is both tedious and error-prone;

• a reactive system is generally intended to control its environment; therefore the environment
may depend on values produced by the program, and the program may depend on values
produced by the environment. Hence, producing realistic input sequences is difficult and such
sequences can not be generated off-line in general.

1E-mail: {Fabien.Gaucher,Erwan.Jahier,Florence.Maraninchi}@imag.fr
2E-mail: Bertrand.Jeannet@irisa.fr
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From sequences of inputs to states, and vice-versa. A usual feature of debuggers is, given a program
input sequence, to show the program internal state (current instantiation of input, output, and local
variables as well as memories) at specific program execution points, possibly expressed as complex
conditions on the internal state.

However, a much more challenging task is the other way around: given an internal state, how does
one find a sequence of inputs that drives the program to that state? Such a state reaching capability is
particularly useful for reactive programs, precisely because providing input sequence is tedious and
difficult.

Issues related to automatic state reaching. The state reachability problem is equivalent to the verifi-
cation of safety properties. Actually, verification tools reduce safety properties into a state reachabil-
ity problem. And the verification of numeric safety properties is notoriously undecidable. However,
a lot of progress has been done recently through the development of model checking [CES86, QS82]
and abstract interpretation techniques [CC77, CH78, JHR99].

In this article, we take advantage of those recent advances to implement a fully automatic state
reaching capability into a debugger for reactive programs.

Our proposition. The basic idea is the following: we first use an abstract-interpretation-based verifi-
cation tool and try to prove that the state to reach (or set of states) is unreachable. Since this problem
is undecidable, some abstractions are performed. Those abstractions are safe in the sense that, when-
ever the proof succeeds, then the state is unreachable for sure. But if the proof fails, we can not be sure
that the state is indeed reachable and the abstract path leading to the state(s) may have no counter-
part in the concrete world. The second idea is then to use a random-based sequence generator that
will try to find a concrete path in the abstract one.

In this article, we present how we have added an automatic state reaching capability to Ludic, a
debugger of reactive programs written in the Lustre data-flow synchronous language [HCRP91]. As
far as we know, there is no automatic support for such a functionality in state-of-the-art debuggers.
We have implemented it by connecting three tools together3.

1. Ludic [MG00], a Lustre debugger that lets one, among other tasks, execute Lustre programs
step by step and inspect program states.

2. Nbac [JHR99], an abstract-interpretation-based verification tool that may prove safety proper-
ties concerning Boolean and numeric variables of reactive programs (e.g., Lustre programs);

3. Lurette [RWNH98, RJR03], an automatic testing tool for reactive programs that computes se-
quences of values that are relevant according to a formal description of the program environ-
ment.

The connection between a proof tool and a test sequence generation tool is not a completely new
idea: it has been done already in order to obtain counter-examples when the Boolean model-checker
fails [PHR01, CGMZ95]. But as far as we known, it is the first time it is done for numeric variables
properly; [PHR01] did handle numeric variables, but by abstracting them away into Boolean
variables.

Contributions. The main contribution of the article is therefore the connection between three state-
of-the-art tools to provide a completely automatic way of reaching a given program state in the
presence of numeric variables. The main advantages of our proposal are the following:

• the tool is fully automatic. The user does not need to know anything about the testing and the
verification tool at all (well, at this stage of debugging at least);

3Ludic and Lurette are part of the Lustre academic programming and validation environment, developed at Verimag. Nbac
has been initially developed by B. Jeannet at Verimag and is now maintained by him at Irisa.
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node maintain (n : int; val : bool) returns (m : bool) ;
var cpt : int ;
let

cpt = if val then (0 -> pre(cpt)) + 1 else 0 ;
m = (cpt >= n) ;
assert(n>=5);

tel

Figure 1: A Lustre program example

• the connection scheme allows the user to start the “reach a state” capability from any state,
and not necessarily the initial one. This kind of functionality has been advocated as a means to
reduce the complexity of model-checking [HWKF02];

• we propose heuristics that try to minimise the length of the generated sequences when explor-
ing the abstract paths;

• the connection scheme would work with different tools, provided they have the same kind of
interfaces.

Structure of the article. We first present in Section 2 a debugging session illustrating the usefulness
of automatic state reaching for debugging reactive programs. Then, we briefly describe the main
features of the underlying tools in Section 3 and describe how they are connected to each other in
Section 4. We present related work in Section 5. Finally, we present some possible future work and
conclude.

2 An illustrating example

Consider the very simple Lustre program of Figure 1. It receives two inputs, an integer variable n
and a Boolean variable val , and computes a single Boolean output m. The output m is true if the
input val has been maintained true during the last n consecutive steps. The length of such periods
is computed with a local counter cpt . pre(cpt) denotes the value of cpt at the previous step; this
previous value is initialised to 0 thanks to the “0 -> pre(cpt) ” expression.

This program makes an assumption about the domain of correct values for input n, via the asser-
tion “(n>=5) ”. Lustre assertions usually express constraints about the program’s physical environ-
ment, that are taken into account by verification tools. Assertions may also be useful for the compiler
to produce optimised code, and for the debugger to detect spurious node4 calls dynamically.

Figure 2 shows the diagram of variable values during a possible execution of the program of Fig-
ure 1 that has been generated by our tool. From instant 0 to instant 4, inputs are given manually, and
the output mkeeps the value false . At this point, the user invokes the state-reaching functionality,
specifying he would like to make m true. Then, from instant 5 to instant 11 , inputs are generated
automatically, in order to make mtrue at step 11 .

One should note that the generated input sequence is not the shortest one, because the input val
at step 6 is false, which causes the counter cpt to be reset. Moreover, from instant 5 to instant 10 ,
the only constraint that is applied to the input n is the assertion, because there is no value for n that
satisfies both the assertion and the goal to reach. However, choosing n = 5 at instant 11 allows to
make m true, i.e. cpt ≥ n . Section 4 will give the details of the whole process on this particular
example.

4Lustre nodes are the equivalent of procedures or functions of most languages.
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Figure 2: A possible execution of the program of Figure 1

3 Synchronous Development Environments and Tools

3.1 Generalities

In the synchronous approach to the programming of reactive systems, all executable programs have
a very simple form. It is an infinite loop: first read inputs from the external world (read values from
sensor devices for instance); then compute the corresponding outputs, depending on the current
input and on (a bounded abstraction of) the input history; emit the outputs (write values to actuator
devices); and do so forever. This very simple code may be run on a processor with no operating
system.

The code that computes the outputs is hard to write in a sequential language, because it often has
a natural parallel structure. The main motivation for the definition of synchronous languages [Hal93],
is to allow users to think in parallel. The synchronous languages Esterel [BG92], Signal [LGLL91] and
Lustre [HCRP91] all have a compiler into sequential code. Their semantics is deterministic, and they
provide syntactic restrictions that rule out infinitely growing memory.

The main application domain being safety-critical embedded systems, a lot of effort has been put
on the definition of testing and formal verification tools, in order to guarantee safety properties over
program executions. In the following, we recall the central notion of an observer, and we briefly de-
scribe three of those tools, involved in our automatic state reachability process: the debugger Ludic,
the verification tool Nbac, and the testing tool Lurette.

3.2 Observers

The Lustre development environment relies on: a compiler into C, a debugger, a testing tool, several
verification tools (model-checkers, and theorem-provers). In all these tools, the user may have to
specify safety properties (see [Lam77] for a distinction between safety and liveness properties).

Safety properties are described by synchronous observers [HLR93]. An observer is a regular syn-
chronous subprogram, which observes the inputs and outputs of the program to be verified, and
which outputs a single Boolean o with the following meaning: o is true as long as the sequence of
inputs and outputs satisfies the safety property. As soon as the property is not satisfied, o is false
forever. Compiling the program to be verified together with its observer provides a single output
program, on which one may prove that the output is never false.

Fifth Int. Workshop on Automated and Algorithmic Debugging
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Of course, observing a deterministic program should not change its behaviour. This is the case
with the observer technique, because the communication mechanism used in synchronous languages
is the so-called synchronous broadcast: adding one or several listeners of a signal does not modify the
behaviour of the emitter.

In the testing and verification tools, the observer technique is used both for the specification of the
property to be tested or proved, and for the description of the environment (see more details below).
In the debugger, observers may be used to specify conditional breakpoints.

3.3 The Ludic Lustre debugger

The Ludic debugger takes advantage of the formal semantics of Lustre: it works by interpreting Lus-
tre, not by executing some compiled machine code equipped with traps. This enables some powerful
functionalities over execution control or state observation. Especially, the static bounded memory
used at execution time can be accessed, hence allowing to store any program state at any step of
some execution. Moreover, saving inputs is sufficient to replay executions deterministically, which
can be performed in a quite efficient way by storing states periodically. Thus, temporal behaviours
of programs can be observed step by step, either forward or backward.

Inside one step, the declarative style of Lustre makes the data dependencies quite hard to under-
stand, because the executed code is the result of a static scheduling of some activities that appear
to be parallel at the Lustre level. Using slicing techniques [Wei79] may help programmers cutting
parts of code that can affect (or be affected) by some variable’s value, even if it does not give richer
information about the partial ordering between computations of variables. Ludic implements such
slicing algorithms, both static and dynamic [Gau03]. As far as this work is concerned, slicing allows
to reduce the size of the program with respect to the set of variables that appears in the property
describing the state to be reached.

3.4 The Nbac verification tool

Nbac [JHR99, Jea00] is founded on the theory of abstract interpretation [CC77], which allows to
overcome the undecidability of the reachability problem for a large class of programs. Sets of states
are represented in an approximate way by abstract values belonging to an abstract domain, and (fix-
point) computations are performed on this abstract domain. This leads to conservative results: if a
state is shown unreachable, then it is, for sure.

The “basic” abstract domain used by Nbac is the direct product of the Boolean lattice and the
convex polyhedra lattice. More precisely, a set of states is represented by the conjunction of a Binary
Decision Diagram [Ack78, Bry86] for Boolean variables, and a convex polyhedra [Jea02] for numeri-
cal variables.

A lot of abstract interpretation tools for imperative programs work with the control structure
given by the program text, and compute abstract values for each state. For parallel programs, state
explosion may occur when building the explicit control structure.

In the declarative style of Lustre, there is no explicit control structure. Some tools use the structure
induced by the configurations of all the Boolean variables, but this may also explode. Moreover, such
a control structure does not take into account the control aspects induced by the numerical variables.
Nbac is original because it starts from a quite declarative program description, in which Boolean and
numerical variables play a symmetrical role. There is no natural control structure in such a program,
and Nbac is able to build one particular control structure, depending on the property to prove. It
starts from a very rough control structure, and then refines it dynamically according to the needs of
the analysis. Successive refinements improve the accuracy of results and incrementally remove states
that have already been shown unreachable.

The input of Nbac is a synchronous program in which state variables have been identified (to
be used by the control structure refinement process), and the transition from one instant to the next
one is made explicit. Starting from the Lustre program example of Section 2 and a specification of

Fifth Int. Workshop on Automated and Algorithmic Debugging



XXX6 FABIEN GAUCHER ET AL.

state
init, pre_m : bool;
pre_cpt : int;

input
val : bool;
n : int;

local
goal, start : bool;
m : bool;
cpt : int;

definition
start = (not init) and (pre_cpt = 0);
goal = if start then false else pre_m;
cpt = if val then pre_cpt + 1 else 0;
m = cpt >= n;

transition
pre_cpt’ = cpt;
pre_m’ = m;
init’ = false;

assertion
n>=5;

initial start;
final goal;

Figure 3: An Nbac program example

the initial and goal states, Ludic produces the Nbac program of Figure 3. See more details on the
translation in Section 4, in particular the specification of an initial and a goal states. For the translation
of the original Lustre program, two state variables are used: pre_cpt and init that helps encoding
the arrow operator (that initialises flows). The variables are updated at each instant according to
equations such as v’ = expr , where v’ denotes the value of variable v at the next instant and expr
is evaluated in the current instant. The assertion on the environment n >= 5 is inherited from the
Lustre program. There is no explicit output because this format is used to specify the following proof
obligation: prove that there is no execution starting in an initial state and leading to a final state.

Starting the analysis, Nbac will first build the explicit automaton given in Figure 4, by separating
initial, final, and other states. Nodes are numbered (for references in the text) and labelled by formu-
las describing sets of states. Edges are labelled by necessary conditions on state and input variables
to move from the source node to the target node within one execution step.

Nbac may answer “yes”, which means that the property is true, and there is no path from initial
to final. It may also answer “don’t know” and provide as a result a new program of the same form.
The meaning of the result is the following: Nbac has reduced the concrete state space of the original
program, removing the states that cannot belong to a path from an initial state to a final state.

The result of the analysis, for the program of Figure 3, is given in Figure 5. Notice that the number
of abstract states has increased, because Nbac has refined the control structure in order to be more
precise. The result is still given by means of formulas, and it may be difficult to extract concrete
counter-examples from it. That is the reason why we connect the output of Nbac to the testing tool
Lurette (see Section 4).

Fifth Int. Workshop on Automated and Algorithmic Debugging
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STATE1

STATE0

STATE2

(n ≥ 5)

val ∧ (pre_cpt + 1 ≥ n) ∧ (n ≥ 5)

val ∧ (n ≥ 5)∨
val ∧ (pre_cpt + 1 ≥ n) ∧ (n ≥ 5)

init ∧ pre_m

init
∧(pre_cpt = 0)

init ∧ (pre_cpt = 0)
∧pre_m

Figure 4: Nbac: the initial control structure

STATE2 STATE12

STATE11

STATE0

init ∧ pre_m
∧(pre_cpt = 0)∧(pre_cpt ≥ 5)

init ∧ pre_m

init ∧ pre_m
∧(pre_cpt ≥ 1)

∧(pre_cpt = 0)

val ∧ (n ≥ 5)

val ∧ (n ≥ 5)

val ∧ (n ≥ 5)

val ∧ (pre_cpt + 1 ≥ n) ∧ (n ≥ 5)

val ∧ (pre_cpt + 1 ≥ n) ∧ (n ≥ 5)
(pre_cpt + 1 ≥ n)

val ∧ (n ≥ 5)∧

val ∧ (n ≥ 5)∧
(pre_cpt + 1 ≥ n)

init

Figure 5: Nbac: the result of the analysis on the automaton of Figure 4

Fifth Int. Workshop on Automated and Algorithmic Debugging



XXX8 FABIEN GAUCHER ET AL.

3.5 The Lurette testing tool

Lurette [RWNH98] is a tool that automatically tests reactive programs. One of the key points is the
selection of inputs. Indeed, the inputs of a reactive system cannot be chosen randomly. The program
is intended to be run inside some environment, on which its outputs will have some influence, thus
influencing the future inputs of the program itself. For instance, the reactive system may be used to
control a physical environment made of a heater and some air; it receives inputs from a thermometer,
and sends outputs on and off to the heater. The heater is supposed to work. Then, if the system
sends on , the temperature should start increasing; considering sequences of temperature inputs that
do not increase from now on, is simply irrelevant. This is even stronger: a model of the physical
environment also gives bounds to the variation rate of the temperature.

In Lurette, the testing process is automated in two ways:

• Lurette automatically generates input sequences for the program under test according to a user-
given specification of realistic (or “interesting”) scenarios modelling the environment. This can-
not be done off-line, because the specification of the environment needs to know the outputs of
the program. Hence the code of the program, and the specification of the environment, are “ex-
ecuted” together to provide sequences of relevant inputs. Generating values for a program with
numerical variables involves general constraint solving techniques. The environment being in-
trinsically nondeterministic means we have to choose random values, among the solutions of
the constraints.

• The test results perusal is also automated; users simply need to provide yet another specifi-
cation (an oracle), which describes correct behaviours or desired properties of the inputs and
outputs sequences. The oracle is also executed together with the program and the environment.

Recently, Lurette has been completely re-implemented, and extended. The main difference, from
the user point of view, is the language used to describe the environment. In the first version of Lurette,
only Lustre observers are offered, which means that we describe acceptors of correct input/output
sequences, as Lustre programs.

In the new version, one may also use the Lucky [Jah03, RJR03] or the the Lutin [RR02] languages.
Lutin is based on regular expressions, which are sometimes more convenient than Lustre, when
sequences of behaviours have to be described. Lutin is compiled into Lucky which is basically the au-
tomaton form of Lutin regular expressions. Using lucky or Lutin instead of Lustre does not change
the underlying synchronous computation model, but it gives a more “operational” style of descrip-
tion, where non-determinism is explicit.

The interesting part, for using this new version Lurette in our context, is the possibility to attach
weights to the branches of choices. For instance, in the regular expression e1 + e2 , one may put a
large weight on e1 , and a smaller one on e2 , meaning that the generator will select the first branch
more often. In the automaton form, such weights are associated with the transitions.

The restrictions of Lutin/Lucky are: (1) the constraints on inputs, at a given point of a sequence,
may only depend on the past values of outputs (as in Lustre); and (2) numeric constraints should be
linear. For instance, x + y > 3 can be handled, but not x2

1 + x2
2 > 2 nor log x1 + sin x2 > ex3 .

We explain the operational semantics of Lucky on the automaton of Figure 6. This automaton
has one Boolean input heat_on, and one float output D. Suppose that the initial node is Off ; two
transitions are possible from that node.

• If the current value of the input heat_on is false, then it means that the transition that goes
to the On node can not be taken (it is labelled by a formula that can not be satisfied). In such
a case, only the transition labelled by the formula −0.1 < D < 0 can be taken. This formula
will therefore be solved, and a solution will be drawn inside its set of solutions (namely, a float
between −0.1 and 0) which will be the output of the automaton for the first step.

Fifth Int. Workshop on Automated and Algorithmic Debugging
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Off On

11 1000

1000

0 < D < 0.1−0.1 < D < 0

heat_on ∧ (D = 0)

heat_on ∧ (D = 0)

Figure 6: A simple Lucky automaton with a Boolean input heat_on and a float output D

• If the current value of the input heat_on is true, then two transitions are possible: the previous
one, which has the weight 1; and a transition labelled by the weight 1000. The latter will there-
fore be drawn with a probability of 1000/1001. In such a case, since the transition is labelled by
the formula heat_on ∧ D = 0, the value of the automaton output D will be 0 for the current
step. And at the next step, the current node will be On.

The behaviour is symmetric if the current node is On, except that D will increase.

4 Connecting tools

From Ludic to Nbac. Consider again our Lustre program example of Figure 1, and the Nbac program
of Figure 3. Remember that we want to generate an input sequence that makes the output variable m
become true , starting from a given step of some execution (not necessarily the first instant). For that
purpose, Ludic has to translate the Lustre program into the Nbac format, adding the specification for
the start and the goal states.

The start state we are interested in is unique and completely defined by the valuation of the mem-
ories of the original program (init and pre_cpt ). Ludic encodes this state into the Nbac format
with the variable start . The set of goal states is usually specified as a safety property through the
use of a synchronous observer. In our example, we need an observer for the variable m. We are inter-
ested in instants for which the output mis true. This is the same as looking for states where pre(m) is
true. This is encoded by goal = if start then false else pre_m , because the goal should
not be true at the instant in which we start the analysis.

The encoding of the original Lustre program requires only two variables: pre_cpt for the mem-
ory of cpt , and init for the encoding of the arrow initialisation operator. Specifying the final state
involved in the proof obligation requires one more variable: pre_m , the memory of m. It is added to
the Nbac program, with the obvious updating equation pre_m’ = m .

For efficiency purposes, Ludic also performs some static slicing on the Lustre program, with
respect to the set of variables involved in the definition of the goal state. Moreover, the front-end of
the Lustre compiler is used to perform some network minimisation in order to reduce the number of
variables, a crucial issue for the performance of Nbac.

From Nbac to Lurette. The verification goal of Nbac is then asked to show that there is no execution
starting from the set of start states and leading to the set of goal states. The two possible answers of
the Nbac analysis are the following:

• the property holds, i.e., the goal state is unreachable and has been removed during the refine-
ment of the control structure. For debugging purposes, this information is as interesting as a
counter-example;

Fifth Int. Workshop on Automated and Algorithmic Debugging
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• the property may not hold, i.e., there may exist a path inside the control structure leading to
the goal state. Lurette will try to generate one or more input sequences. If Lurette generates
at least one finite sequence, this sequence can be replayed by Ludic. Otherwise, we are in the
problematic case where it is impossible to know, because of the abstractions made by Nbac,
whether the state is unreachable or whether an existing path is difficult to reach because of a
very low probability.

From Lurette back to Ludic. The control structure delivered by Nbac from our example is given in
Figure 5. Here, it is intuitively clear that we should try to avoid the node STATE12 to generate a
short counter-example, which implies to always maintain the input val to true. This corresponds
precisely to the fact that the input variable val should be maintained true long enough to make m
become true.

Attaching Lucky’s weights to this control structure can help finding short paths. Our heuristic is
the following: from a given state S, the transitions that may lead to the goal state along the shortest
paths have the greater weights. More precisely, we compute for each node n its minimal distance (in
number of edges) δ(n) to the goal node. To increase the weight of edges that make this distance de-
crease, each edge n1 → n2 is then given the weight pδ(n1)−δ(n2), where p is a user defined parameter.

2

2

2

4

1

4

4

STATE2 STATE12

STATE11

STATE0

init ∧ pre_m
∧(pre_cpt = 0)∧(pre_cpt ≥ 5)

init ∧ pre_m

init ∧ pre_m
∧(pre_cpt ≥ 1)

∧(pre_cpt = 0)

val ∧ (n ≥ 5)

val ∧ (n ≥ 5)

val ∧ (n ≥ 5)

val ∧ (pre_cpt + 1 ≥ n) ∧ (n ≥ 5)

val ∧ (pre_cpt + 1 ≥ n) ∧ (n ≥ 5)
(pre_cpt + 1 ≥ n)

val ∧ (n ≥ 5)∧

val ∧ (n ≥ 5)∧
(pre_cpt + 1 ≥ n)

init

Figure 7: The Lucky automaton: adding weights to the result of Nbac shown on Figure 5

The result of this heuristic with p = 2 is shown on Figure 7. Note that it is the same automaton
as in Figure 5, but decorated with weights. For STATE11, the outgoing transitions have weights 1,
2, and 4. The loop on STATE11corresponds to the incrementation of cpt , which should be selected
at least four times before the transition to the goal state is satisfiable. In the diagram of Figure 2,
steps 5 and 6 represent a (useless) transition to STATE12 and back. Choosing p = 1000 instead
of 2 would make this behaviour very unprobable. Indeed, when the transition to the goal state is
unsatisfiable, the choice is between transitions with weights 1 and 2 if p = 2, or 1 and 1000 if p = 1000.

Limitation of the approach. There exists cases in which increasing weights does not help in generat-
ing shorter paths. Observe, for instance, the automaton of Figure 8. In order to find a concrete path
from A to C, the random sequence generator has to “choose” the loop that increments cpt exactly
5 times, and then to “choose” the transition from A to B. Whatever the weights on the transitions
sourced in state A, this is very unlikely to happen.

Fifth Int. Workshop on Automated and Algorithmic Debugging
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CBA

cpt = pre(cpt)+1

cpt = 0 cpt = 5

Figure 8: The Lucky automaton of a problematic case

In fact, the automaton of Figure 8 can not be produced by Nbac. Indeed, Nbac performs a back-
ward analysis that enforces a condition on the transition from A to B, i.e., the guard cpt = 5 . In
this case, the “choice” between the two transitions sourced in A can be guided by the satisfiability of
conditions on the transitions, not only by weights.

However, in similar cases, Nbac may have to abstract away variables, preventing the backward
analysis from enforcing a condition on the transition from A to B. In those complex cases, playing
with weights attached to the transitions sourced in A is useless. These cases should be detected
somewhere along the chain of tools. This requires further work.

5 Related work

As far as the motivations of our work are concerned, the closest related work deals with automated
testing of synchronous circuits. In [ZCR01], for instance, the authors use symbolic simulation in order
to generate functional test vectors; since they care about coverage metrics, they have to specify a
simulation target, and to try and reach it. The paper mainly discusses various constraint solving
problems involved in the symbolic simulation process. Our approach is based on an approximate
verification tool, which guarantees more reasonable costs. For the “reach a state” functionality to be
useful in a debugger, it should not take too long.

The connection between a proof tool and a test case generation tool is not a completely new
idea: it has been done already, in order to obtain counter-examples when the Boolean model-checker
fails [PHR01]. The problem of error diagnosis in symbolic model-checking is well known [CGMZ95],
but it is even more difficult in the case of programs with (a lot of) numerical variables, because
the verification tool only gives approximate results. More recently, there has been interest in using
counter-example generation to refine abstractions [CGJ+00, CCK+02], but in these works only ab-
straction of (big) finite-state systems are considered, which simplifies several algorithmical aspects.

6 Conclusions and Further work

The first motivation of this work is to provide a “reach-a-state” functionality in a debugger for reac-
tive systems, written in formally defined languages, for which the problem can be expressed clearly.
Since implementing this functionality amounts to solving a general model-checking problem, we
chose a solution in which several independent tools are connected together, instead of some ad hoc
coding of model-checking algorithms in the debugger. At first sight, it might not be the most straight-
forward implementation, but it makes clear what interfaces have to be respected between the various
stages, for other tools to be used in the same chain. The set of tools we selected for demonstrating
the feasibility of the approach have the following advantages: they all take numerical variables into
account; the proof tool favours approximate results because they can be obtained in a reasonable
time; the testing tool exploits the weights on the transitions of the automaton in order to provide
short sequences.

We tried the chain of tools on medium-size examples, and it seems feasible. As one could expect,
the bottleneck lies in the verification tool. In particular, the number of variables has a strong influ-
ence on the complexity of the algorithms involved. Further work will be devoted to the translation
from Ludic to the input of Nbac, in order to simplify the program as much as possible. We already
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used slicing techniques, but we could also apply general constant propagation techniques, or other
optimisations based on static analyses.

Further work includes studying carefully the influence of weights on the generation of “short”
sequences. For the moment, the weights are chosen automatically according to the structure of the
graph, and the length of the paths leading to the goal. We could also think of alternative criteria for
choosing the sequences: in a debugger, the sequence provided by our chain of tools is meant to show
clearly how the program can go from the present state to another one. It might be the case that a
sequence in which a minimal number of variables change their values is simpler to understand than
a shortest sequence in which all variables change their values at each step.

As a new feature in the debugger Ludic, the ability to reach a state automatically has several
applications. In order to automate the exploration of both time and data dependencies of complex
programs, Ludic implements an original adaptation of the well-known algorithmic debugging prin-
ciple [Sha83]. In practice, this technique can be used for a large class of (even big) programs. However,
it may be the case that, at a given point of some execution, the value of a variable directly depends on
some values computed many steps ago, forcing the tool to explore many previous steps (potentially
the whole execution). For such programs, generating a short input sequence that leads to the same
state where the bug symptom originally occurred would help locating the bug.
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Figure 9: A Ludic snapshot of the automatic state reaching capability in action
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