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Abstract

This paper describes how a mobile robot (a six-wheeled Koala equipped with a PAL pan-tilt
camera) can chase an elusive target (a remote controlled toy car) in a unknown and unconstrained
environment. The first purpose of the paper is to demonstrate efficiency, simplicity, and adequacy
of Bayesian Robot Programming (BRP) to quickly develop such applications. The second purpose
of the paper is to illustrate that tremendous information compression ratio may be obtained by
some pertinent sensori-motor decoupling.
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Abstract

This paper describes how a mobile robot, (a six-wheeled
Koala equipped with a PAL pan-tilt camera) can chase
an elusive target (a remote controlled toy car) in a
unknown and unconstrained environment. The first
purpose of the paper is to demonstrate efficiency, sim-
plicity, and adequacy of Bayesian Robot Programming
(BRP) to quickly develop such applications. The sec-
ond purpose of the paper is to illustrate that tremen-
dous information compression ratio may be obtained
by some pertinent sensori-motor decoupling.

1 Introduction

This article is concerned with the chase of an elusive
target by a mobile robot equipped with a vision syster.
By chase, we precisely mean following and catching up
a moving target.

A central problem of robotic programniing is how to
use an incomplete and uncertain model of the environ-
ment to perceive, infer, decide, and act efficiently. An
original robot programming method that specifically
addresses this problem has been proposed by O. Lebel-
tel in his Ph.D. Thesis [6] and summarized in [7]. This
method called Bayesian robot programming (BRP) is
used in the present article to perform the chase using
neither geometric model of the robot nor camera cali-
bration.

The control of a mobile robot based on visual data
has to face an essential problem of data reduction. How
to deal with the considerable data flow coming from the
camera? In this paper we propose to summarize the
huge visual data flow by the single head (the camera)
pan aud tilt. Head and body control are decoupled. On
the one hand, we control the head to visually pursue
the target. On the other hand, we control the body
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to pursue the head. Both results are then combined to
obtain the desired chasing behavior.

Tsakiris et al have shown that it is possible to extend
visual servoing techniques to nonholonomic systems by
properly adding degrees-of-freedom to the platform, in
the form of a hand-eye system [12]. Dias et al [1] have
addressed the problem of simulating pursuit with a mo-
bile robot and artificial vision. Their solution deals
with the interaction of multiple independent processes
controlling different degrees of freedom of the vision
system and the mobile robot position and orientation.
Virtually all existing approaches to visual servoing are
based on control theory.

After briefly presenting BRP in the next Section and
the experimental platform in Section 3, we illustrate the
BRP in Section 4 by addressing the problem of visual
servoing of the head of the robot. Section 5 is dedicated
to the control of the mobile platform using ouly the di-
rection and the orientation of the head. Finally, Section
6 illustrates behavior combination by mixing the chase
with a reactive behavior of obstacle avoidance.

2 Bayesian Robot Programming

We assume that any model of a real phenomenon is
incomplete. There are always some hidden variables,
not taken into account in the niodel, that influence the
phenomenon. Furthermore, perception and control are
inherently uncertain. Uncertainty arises from sensor
limitations or noise. Rational reasoning with incom-
plete and uncertain information is quite a challenge for
artificial systems. Bayesian Inference and Learning ad-
dresses this challenge [4] relying upon a well established
formal theory.

The probabilistic approach has led to fielded systems
with unprecedented levels of autonomy and robustness.
In recent years it has become the dominant paradigm in
a wide array of robotic problems, such as map building,
localization and planification [2, 8, 11, 5]. Lebeltel, with



the BRP method, proposed a quite different approach
based on the concept of bayesian programs. Beside mo-
bile robotics, BRP has also been used for arm control
and CAD modeling [9].

The usual notion of logical proposition (either true
or false) is the first key concept of probabilistic rea-
soning. Logical operators can be used to derive new
propositions (conjunction, disjunction, negation). Dis-
crete variable is the second concept that is needed: it is
a set of logical proposition that are exhaustive and mu-
tually exclusive (at least one is true, only one is true).
Discrete variables can be combined too (conjunction).
To deal with uncertainty, probabilities are attached to
propositions, and to manipulate probabilities, usual in-
ference rules are used:

¢ Conjunction rule:

P(X Y)=P(X)P(Y | X) = P(Y)P(X | Y).
o Normalization rule: 3, P(X) = 1.

Where X and Y denote discrete variables and P a prob-
ability.

Relevant Variables
Description Decomposition
Program .
Parametric Forms

Question

Fig. 1: Structure of a Bayesian Program.

In this framework, a Bayesian Program consists of
two parts: a description and a question (See Fig. 1).

A description is a model of interaction between the
robot and its environment. It is a probability distribu-
tion defined by:

o the set of relevant variables on which the joint dis-
tribution is defined (typically motor, sensory and
internal variables),

o the decomposition of the joint distribution as a
product of simpler terms. This terms describes
dependent relationship between variables,

o the parametric forms assigned to each of the terms
appearing in the decomposition.

This model could be used to control the robot. Or-
ders are drawn at random according to distributions
called gquestions. A question is obtained by partitioning
the set of variables into three sets: the searched vari-
ables (typically motor variables), the known variables

Fig. 2: Koala robot and its target.

(tipycally sensor variables) and the free variables (tipy-
cally internal variables). A question on the description
D may be expressed as the distribution:

Pp(Searched | Known). (1)

Knowing the joint distribution (the description), It is
always possible to compute any possible question (any
partition of the variables). To do so, the following gen-
eral inference is used:

Pp(Shearched | Known)

= Z P(Searched Free | Known)
I'ree
Y- rree P(Searched Free Known)
P(Known)
Yorree P(Searched Free Known)
ZSearched,Free P(Searched Free Known)

1
= X Z P(Searched Free Known)

Free

where Z is a normalization term.

Our research group! has developed an API called
OpenPL which is very close to mathematical language,
to express bayesian programs. An inference engine has
been implemented to automate bayesian inference. A
short description of this engine can be found in [7]. It
operates in two stages: a symbolic simplification stage
that permits to reduce the complexity of the probabil-
ity distribution to be computed, and a numeric stage
that actually computes the distribution.

3 Experimental Platform

Koala is a compact (30 x 30 cm) mobile robot designed

at the EPFL? and commercialized by K-Team®. It car-

ries a PAL pan-tilt camera independently controlled
'http://www-leibniz.imag.fr/LAPLACE/
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and is equipped with a belt of 16 infrared proximeters
used for obstacle detection (see Fig. 2).

The camera is controlled in direction and orienta-
tion, with values stored iu variables Pan and Tilt. The
robot is controlled by its translation speed V;,.,s and
its rotation speed V,.,;.

The target we want the robot to chase is the red
radio-controlled car.

4 Head Servoing

4.1 Object Detection

We are ouly interested in the position of the gravity
center of the target in the image. We use the statistical
method described in [10], based on histograms of lu-
minance normalized color. The position of the gravity
center of the target in the image is stored in the vari-
ables X (horizontal position) and Y~ (vertical position).

This algorithm is simple and efficient. Furthermore,
it is robust to partial target occlusion. As it is a proba-
bilistic algorithni, it has been easily implemented using
OpenPL.

4.2 Head Servoing

The goal of head visual servoing is to keep the vi-
sual target centered in the image. The classical visual
servoing approach gives a way to compute differential
changes in the image features parameters knowing dif-
ferential changes in the position of the camera, using
the image Jacobian {3]. Alternatively, we propose to
specify this relationship as a description called Dy q4.
In the classical approach you have to inverse the jaco-
bian to control the camera. With the BRP approach,
this inversion is implemented as a question. In the fol-
lowing, we consider that the two axis of the camera are
independent and present ounly the description for the
pan axis.

Two wariables are relevant here: the motor variable
Pan, and the sensor variable X.

As we want to describe the movement of the target
in the image knowing a movement of the camera, we
choose the following decomposition of the joint distri-
bution:

PDhcad (X Pan) =Ppaa (Pan)PDhead (‘Y'Pa")' (2)

To complete the description Dpeqq, we finally need
to assign parametric forms to each of the terms ap-
pearing in (2). We have no a prior: information about
the movement of the camera. Hence Pp, _,(Pan) is
a uniform distribution. Depending on the situation,
the observation for X may be more or less certain.
This is summierized by assigning a Gaussian parametric

Fig. 3: Evolution of visual servoing of the head when the
target is moving. White cross on the car is its center of
gravity given by the vision algorithm. Curves represent
corresponding Pp,,.,{ Pan | X) distributions.

form G (pan),s(Pan) (X) to Pp,_,, (X | Pan). Values of
u(Pan) and o(Pan) could be learnt by experiment or
a priori fixed by the programmer using the following
intuitive idea: when the caniera moves to the left, the
target moves to the right of the image.

The goal of this program is to control the camera
knowing the position of the target in the image. There-
fore, the question is:

PDhcad(Pan ' ‘¥)' (3)

This “inverse” probability distribution is computed
every tenth of a second. A value for Pan is drawn at
randon according to this distribution and sent to the
actuators of the camera.

4.3 Experimental Results

Figure 3 presents six images of the process. The base
of the robot is immobile. Curves under the images
represent the probability distribution of the question
Pp,...(Pan | X). First the target is immobile and
placed on the left of the robot. Algorithm quickly cen-
ters the target by moving the camera to the left (first
line). Then the target violently accelerates and stops.



We can couclude that detection of the target is ac-
curate enough when the target is the only red object of
the scene. Bayesian inference is efficient to solve such
an inverse problem, so the camera can be controlled at
a frequency of 10 Hz.

This sequence also shows that the large velocity of
the camera (up to 400 degrees per second) allows quick
movements of the target.

5 Body Control For The Chase

5.1 Bayesian Program

We want the robot to chase the target: follow it and
catch it up. The main idea is to consider only the
position of the head to control the body of the robot.
In this way the visual information (100 x 100 x 32 = 300
KBytes) of the target position is summarize as the head
position and orientation (2 floats). The corresponding
description is called D pqge-

Four variables are relevant in this problem: the two
motor variables V., and Vj,.4ns, the camera direction
Pan and the camera orientation T'ilt.

The decomposition is chosen using the following as-
sumptions:

e the rotation (Vo) and translation (Virens) speed
of the robot can be coutrolled independently,

e the rotation speed (V;..¢) of the robot only depends
on the head direction {Pan),

¢ the translation speed of the robot depends on the
head direction (Pan) and orientation (T'%lt).

We obtain:

Pp.,...(Pan Tilt Vyor Virans) =
(Pan Tit)Pp,,.,.(Viot | Pan)
(Virans | Pan T4lt). (4)

chasc
Pp
Pp

chase
chase

To complete the description Depase, we have to assign
parametric forms to each of the terms appearing in (4).

We have no a priori idea of the target position. Hence
Pp,,.,.(Pan Tilt) is a uniform distribution. We choose
a Gaussian parametric form G, (pan) o, (Pan)(Vrot) t0
represent the distribution Pp,_,,  (V;or | Pan). The in-
tuitive idea for computing p; (Pan) is that the more the
head is turned to the left, the quicker the body should
turn to the left. We choose another Gaussian paraniet-
ric form Gug(Pan Tilt) o0 (Pan Tilt) (V}rans) to represent
the distribution Pp_, ... (Virans | Pan Tilt). The intu-
itive idea is the closer the robot is from the target, the
more the head is looking down. Pan is used to moder-
ate the translation speed of the robot when the target
is on its left or on its right

Fig. 4:

Example of a chase with the entire sys-
tem. The video is available at http://www-
leibniz.imag.fr/LAPLACE/Films/.

Finally the question to control the body of the robot
is:

PDchasc (V;‘Ot ‘/tra,ns l Pan Tllt) (5)

Like for head servoing, this probability distribution is
computed every tenth of a second and the correspond-
ing drawn values of V}.,; and Viq,s sent to the motors
of the robot.

5.2 Experimental Results

Figure 4 shows evolution of the tracking with the entire
system. It illustrates the fact that the velocity of the
camera allows to track the car even if the body is slower
than it.

6 Chasing In The Presence Of Obsta-
cles

In section 5, the environment was assumed to be free

of obstacles. Now we want the robot to chase its tar-

get despite the presence of obstacles. We assume that
obstacle can’t hide the target from the robot.

6.1 Bayesian Program

We dispose of another reactive behavior, obstacle
avoidance, based on the proximeters response, and



which control the body on the same variables V.,
and Virqns. This behavior is given by the question
Pp,.oia Virans Veot | Proz Dir) in which Prox and Dir
represent the proximity and the direction of the closest
obstacle, and Dgy0:4 the corresponding description.

To chase the target despite the presence of
obstacles we mix this behavior with the chase
of an object, which is given by the question
Pp..... Virans Viot | Pan Tilt Depyse) defined in the
previous section.

We define a new description D, ;..

Relevant variables are those defined in the descrip-
tions Dyyoiq and Depgese. To mix the two behaviors, we
introduce a new variable H, which acts as a command
to switch from avoidance to pursuit. Consequently H
can take two values: a or ¢. Finally we consider the
seven variables: {H, Pan,Tilt, Prox, Dir, Vio, Virans }-

We choose the decomposition:

Pp,...(H Pan Tilt Proz Dir Vyot Vians) =
Pp,...(Tilt Pan)
Pp,,. (Prox Dir) (6)
Pp,...(H | Proz Dir Tilt)
Pp,... Virans Veot | H Proz Dir Tilt Pan).

To complete the description D p,s., we have to assign
paramatric forms to each of the terms appearing in (6).

We have no idea of target and obstacle positions,
consequently Pp_ . (T'ilt Pan) and Pp, , (Proz Dir)
are uniform distributions. Pp_, (H | Proz Dir Tilt)
is a priori defined as a function of T%lt, Prox, and Dir,
using the intuituve idea: when the robot is far from
any obstacle or close to a lateral one, the probability to
do chase is high. When the robot is close to a frontal
obstacle, the probability to do avoidance is high. Tiit
is used to distinguish the target from an obstacle.

Finally we specify the probability distribution on
Virans and V., as dependent on the value of H. In
OpenPL, a parametric form could be specified as a
question to another description. We use this ability
to relate D, t0 Depgse and Dgyoid-

Pp,... Virans Viot | [H=a] Proz Dir Tilt Pan)=

Pp,...a Virans Veot | Prox Dir). (7
PDm;z( trans Vrol I [H:C] Prox Dir Tt Pan):
Ppyose Virans Veor | Tilt Pan). (8)

Then the question to control the robot is:

Pp....(Veot Virans| Pan Tilt Proz Dir). 9)

Fig. b5:

Example of obstacle avoidance during
the chase (the target is inside the white rect-

angle). The video is available at http://www-
leibniz.imag.fr/LAPLACE/Films/.

Result of bayesian inference on the probability dis-
tribution expressed in 9 is a sum on the values taken by
the variable H. Consequently, the robot does not only
switch from avoidance to chase, but does a weighted
combination of the two behaviors, depending on the
sensor values.

6.2 Experimental Results

Figure 5 shows an example of chase in which the target
is behind an obstacle but still in the field of view of the
robot. During the obstacle avoidance, the head of the
robot keeps focused on the target, so that the chase can
go on after the obstacle has been avoid.

As the method is totaly behavioral, we can’t avoid
local minima. But as the decision process is stochastic
(orders are drawn at random according to a probabil-
ity distribution), we can hope that the robot goes out
“little” local minima.

This experiment shows that BRP allows easy, clear
and rigorous specifications of such behavior combina-
tion. This seems to be an important benefit compared
to some other methods that have great difficulties in



mixing behaviors with one another.

7 Conclusion

We presented an application of chase task using an au-
tonomous mobile robot equipped with a vision system.
This application has been developed using the Bayesian
Robot Programming (BRP) methodology and the asso-
ciated API OpenPL. The corresponding bayesian pro-
grams are very short and simple. They essentially
amount to the mathematical equations given in this
paper. We show that complexity of control of the body
is considerably reduced using internal information such
as the direction and orientation of the head. Further-
more, independent control of the head and the body
allows easy behavior combination.

Future developments will address more complex
sensori-motor devices. We are working on applications
of these techniques to both car sensor fusion and control
and to complex manipulations tasks with multi arms
set up.
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