N

N

Bayesian Learning Experiments with a Khepera Robot
Julien Diard, Olivier Lebeltel

» To cite this version:

Julien Diard, Olivier Lebeltel. Bayesian Learning Experiments with a Khepera Robot. 1999, 10p.
hal-00019372

HAL Id: hal-00019372
https://hal.science/hal-00019372
Submitted on 10 Aug 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00019372
https://hal.archives-ouvertes.fr

Bayesian Learning Experiments with a Khepera Robot

J. Diard and O. Lebeltel

Equipe LAPLACE, Laboratoire LEIBNIZ - CNRS,
46 avenue Félix Viallet ; 38031 Grenoble ; France

E-mail: Julien.Diardeimag. fr

Abstract. This paper presents a new robotic programming environment based on the prob-
ability calculus. We show how reactive behaviours, like obstacle avoidance, contour fol-
lowing, or even light following, can be programmed and learned by the Khepera with our
system. We further demonstrate that behaviours can be combined either by programmation
or learning. A homing behaviour is thus obtained by combining obstacle avoidance and light
following.

1 Introduction

We propose a new robotic programming environment, which was tested on a Khepera robot.
This system is based on the probability calculus. The choice of probabilities as a formal sys-
tem allows an easy and rigorous translation of intuitive knowledge into a program. An example
is the expression of dependence or independence between variables. In order to program a be-
haviour, the programmer will first have to state such a priori knowledge about the task at hand.
This “seed” of program can then be tuned by confronting it to experimental data which the pro-
grammer gathers while showing to the robot the expected behaviour, Probability calculus gives
the means for playing back the knowledge stored in the program. By presenting a few examples,
chosen mainly for their clarity, we will show that, with this method, programming and combin-
ing reactive behaviours is easy.

The plan of this paper is as follows. First, we present the mathematical background needed to
understand our programming method. The main component of a program is a description which
basically defines a joint probability distribution over relevant variables. Next we will give ex-
amples of various reactive behaviours which can easily be programmed with our system. The
last section of this paper introduces a method for combining reactive behaviours; we give an ex-
ample where we combine obstacle avoidance with light following to obtain a behaviour used by
the Khepera to return to its base. References to much more detailed presentations, addressing
all difficult technical points and debates, can be found in the text.

2 Bayesian robot programming system

In this section, we will describe our programming method. We introduce the few concepts, defi-
nitions, notations and rules which are necessary to understand the calculus and experiments pre-
sented in this paper.

2.1 Basic concepts

In our programming system, the manipulated objects are logical propositions, which can be com-
posed using the usual operators and properties : if « and /3 are propositions, then a A 3 (or a/3)
denotes the conjunction of o and /3, ~« denotes the negation of a, and so forth. We can now
define discrete variables. A discrete variable X' corresponds to a set £y of kx logical proposi-
tions [X = ;] such that these propositions are mutually exclusive ([X = ;] A [X = ;] is false
unless « = j) and exhaustive (at least one of the proposition [X' = ;] is true). When introducing
variables, we will merely give the domain £y of possible values for that variable, along with
its cardinal £y . The conjunction X &Y (or simply X'Y") of two variables X and Y then corre-
sponds to the set of kx ky propositions [\ = ;] A[Y = y;]. XY corresponds to a set of mutually
exclusive and exhaustive logical propositions; as such, it is a new variable'.

To be able to deal with uncertainty, we will attach probabilities to propositions. These probabil-
ities will always be assigned with respect to some preliminary knowledge w. Therefore, P(a|r)
denotes the probability that the proposition o is true, knowing 7; P(«a/3|yr) denotes the proba-
bility that the conjunction a4 is true, knowing v and 7; finally, by convention, if X is a variable,
P(X|r) means Vz; € Ex, P([X = a/]|7).

To manipulate probabilities, we will use classical inference rules, namely the product rule and
normalization rule. The product rule for variables is written

P(XaYr)=P(X|m)P(Y|X7)=PY|r)P(X]|Y7),
and is also known as Bayes theorem. The normalization rule states that

Y P(X|r)=1.
X

From these two rules we derive the marginalization rule, which allows for easier derivations :

Y P(X &Ym= P(Y]|r).
X

Given a set of n variables X1, Xy, ..., X}, a question is defined as a partition of this set in three
subsets {5, £ and {7, for the sets of searched, known and unknown variables, respectively. Let
Searched, K'nown and Unknown be the conjunctions of the variables in £, £x and &/, respec-
tively. Given the joint distribution P(X1 X2 - Xy, |m) = P(Searched© Known o Unknown|r),
it is possible to answer any question. We first have to compute the probability distribution
P(Searched|Known). The derivation is as follows :

P(Searched| Known&m) = Y P(Searched & Unknown|Known)
Unknown
Ytnknown P(Searched & Unknown & Known|m)
P(Known|r)
Strnknown P(Searched & Unknown & Known|r)

2 Searched Unknown I (Searched cd Unknown & Known|)

1
= Y P(Searched @ Unknown & Knownl|r),

Unknown

'In contrast, the disjunction of two variables is not a variable, since the associated propositions
[X = ;] V[Y = y;] are not mutually exclusive.

where Z is a normalization constant. Answering the question consists in deciding a value for the
variable Searched according to the distribution P(Searched|Known & «). Different decision
policies are possible, in our programming system we usually choose to draw a value at random
according to that distribution.

Please refer to [5] for a full-length presentation of probabilities and bayesian inference.

2.2 Programs

[Specification

—~ Variablcs
+ Dir : domain {-10, -9, ..., +10}, cardinal 21
(g * Prox:domain {0, 1, ..., 15}, cardinal 16

- + Vrot:domain {-10, -9, ..., +10}, cardinal 21

:;.4 — Dccomposition

G P(Dir Prox Vrot | A7 ,..)

o = P(Dir | Arm,,,..) P(Prox | DirAm_, ..} P(Vrot | Dir ProxAx__)
£ 0 resetive reacive reactive
© - = P(Dir | Ax,..) P(Prox | Ax ,..)P(Vrot | DirProx Az . ..)

I [a] reactive reavtive reaciive

o - Paramectrical forms

8 « PDir| Am .0 P(Prox| Am . .) — Uniforms

Al * P(Vrot| Dir Prox A m,....) — Gaussians
Identification

a o . . .

o} — Piloting the Khepera; gathering data : A ; lcarning algorithm

o g p g g follow g g

Is)

8 Question

\8(- DraW(P(ert | [Dll' = d(] [PI'OX = pl] Afelluw nrcaclivc))

Figure 1. Above, an example of a program. It shows both the program struc-
ture our method defines, and an example where the robot follows contours.
Below, a picture of the Khepera following the contour of an object.

In our robotic programming method, a program consist of two components, a description and a
question. We show Figure 1 an example of a contour following program.

A description can be viewed as a knowledge base, in which the programmer gives information
to the robot about the task to be performed. A description consists of two parts, a specification

phase, which aims at defining the parametrical form of a joint distribution over relevant variables
(the preliminary knowledge), and an identification phase, where the parameters are defined,
eventually by gathering data A experimentally and assessing the parameter values by a learning
mechanism. Therefore, a description is defined by a pair < 7, A >, the latter one being eventu-
ally empty if there is no identification phase.

The specification phase has three components :

¢ Variables The programmer specifies which variables are relevant for the task. In our run-
ning example, we choose to sum up the information given by the six front proximeters the
Khepera has, in the two variables Dir and Prox. Dir roughly corresponds to the direc-
tion leading to the nearest object, with lowest (resp. highest) value -10 (resp. +10) for an
obstacle on the left (resp. right). It is computed from the proximeter values by :

, 90(Px5— Pz0) +45(Px4 — Pal) +5(Pa3 — Px2)
l)l =
91+ P20+ Pal+ Pa2+ Px3+ Pad + Pab)

Progx varies with the proximity of that object, varying from 0 (no obstacle) to 15 (contact),
and is obtained by :

Prox = [(Max(Px0, Pxl, P22, Px3, Ped, Pa3))/(64)].

Concerning motor variables, we choose to set the robot’s translation speed to a constant
and keep only one degree of freedom, the rotation speed V'rot of the robot. These three
variables, Dir, Prox and Vrot, are the only ones considered for our contour following
task; their definitions are summed up as follows :

— Dir : domain {—10,—9,...,4+10}, cardinal kp,, = 21,
— Prox : domain {0,+1,...,+15}, cardinal kp,,, = 16,
- Vrot : domain {—10,-9,...,+10}, cardinal ky/,,; = 21.

¢ Decomposition of the joint distribution The second specification step consists in giv-
ing a decomposition of the joint probability P(Dir &) Prox & Vrot|A & Treactive), s a
product of simpler terms :

P(Dir & Proz & Virot|A © mreactive)
= P(DirlA G Treactive) P(Proz| Dir & A& Treactive) P(Vrot | Dir & Prox & A G Treactive)
= P(Dir|]A & Treactive) P(Prox|A & Treactive) P(Vrot|Dir & Prox & A © Treactive)-

The first equality results from the application of the product rule, while the second one
simplifies P(Prox|Dir & A & Tregetive) i P(Proz|A @ Treactive). This simply means
that we consider Prox and Dir independent for our task; we think that the robot can ig-
nore the relation between the distance and direction of obstacles, and yet be successful at
following their contour.

¢ Parametrical forms To be able to compute the joint distribution, we finally need to assign
parametrical forms to each of the terms appearing in the decomposition :

P(l)”lA 2 ﬂ'w‘euctive) = Un'ifmvn,
P(Prox|A s mpeactive) = Uniform,
P(Vrot|Dir & Prox G A G Tpeactive) = G(p(Dir, Prox),o(Dir, Prox)).

We have no a priori knowledge about the direction and distance of the obstacles, therefore
we assign uniform distributions to P(Dir|A & Tyeqctive) and P(Prox|A G Tyeqetive). On
the other hand, we assume that, for each sensory situation, there is one rotation speed that
should be prefered. Hence, the distribution P(Vrot| Dir © Prox 3 A @ Treqetive) has to be
unimodal. However, the confidence in this choice may vary with the situation; this leads
to assigning gaussian parametrical forms to this term.

This completes the specification phase.

In the identification phase, the programmer has to assess the values of the free parameters. In
simple cases, the programmer may do it himself, by writing a function or table that stores these
parameters. We obtained obstacle avoidance programs for our Khepera this way; we call this
method a priori programming. However, it is often easier to justify parameters when they have
been computed by a learning algorithm. In our example, since we only have mean values and
standard deviations to set, this learning phase is simple. Using a joystick, we pilot the Khepera
to follow contours. Every tenth of a second, we record experimental data < dir, prox, vrot >,
where dir and pror are computed from the proximeter values at time ¢, and vrot is the mo-
tor command given by the user at the same time ¢. Given a set A follow Of such data, comput-
ing the mean values and standard deviations of the gaussian distributions associated with the
P(Vrot|Dir & Prox & A foliow © Treactive) term is straightforward.

The description being now completed, we can have the robot play back the knowledge it has
been given, by a question. In this case, the robot should answer the following question :

Draw(P(Vrot|[Dir = d¢] & [Prox = py] © A follow © Treactive))- ¢))

We observed as a result a very robust contour following behaviour, with only a few (20-30) sec-
onds of learning.

The interested reader should refer to [2, 3] for a more detailed presentation of our programming
method.

3 Reactive behaviour learning

In this section, we describe two reactive programming experiments we did with the Khepera.
The first one shows variations on the contour following program we presented earlier. The sec-
ond one presents the facility our method provides for programming a light following behaviour
for the Khepera.

3.1 Proximity based behaviours

We presented in the previous section a contour following program which, in our system, is de-
fined by the pair < Tycqctive. A foliow > and a question (see Equation 1). Several variations are
possible :

o It is possible to change the question, keeping the description unchanged. For example,
Draw(P(Vrot|[Dir = di] © A foiow 5 Treactive)) allows the robot to operate even if some
failure prevents the computation of Proxr.

e Itis possible to change the experimental data, keeping the preliminary knowledge T, cqctive.-
It should be clear at this point that m,..qctie 18 rather generic, stating only a few modeliza-
tion choices. What actually makes the robot follow contours is the identification phase,
where the user shows what to do in some sensory situations. We can thus create completely
different behaviours with the same specification m ¢ qctive. For example, we programmed
the robot to push or avoid obstacles, by merely changing the learning phase, and pairing
Treactive With the corresponding data sequence, respectively A5, and Ag,pi4.

3.2 Luminosity based behaviours

(Specification

— Variables
* Lum : domain {-170, -90, -45, -10, +10, +45, +90, +170},
cardinal 8
8 » Vrot : domain {-10, -9, ..., +10}, cardinal 21
'}:‘ — Deccomposition
8-« * P(Lum Vrot] m, ...)=P(Lum]| T ohototany) POVIOL [Lum 7t)
#(-)I < — Parametrical forms
- 8 » P(Lum/| nl,,wmmxy) — Uniform
g o) * P(Vrot| Lum 7t ,,,,) — Gaussians
m< n
O 0.50
H 60
[aF
Identification o2
jo .
8 \ — A priori o
Fu}
f(f) Question e
\8‘ — Draw(P(Vrot | [Lum = 1] 7,y 1010x,))

Figure 2. A straightforward program where the robot follows light. The plot
shown represents the probability distributions P(Vrot|Lum & Tppototary), ONE
for each value of Lum, that were defined a priori.

Itis also possible to change the specification. We present Figure 2 a program based on luminosity
information, where the robot follows the (most powerful) light source. This phototaxy program
necessitates few comments :

o The variables of interest are only Lum and V'rot, Lum being obtained by a simple com-
putation on the luminosity variables the Khepera provides, and roughly corresponding to
the direction the most powerful source of light is coming from.

e Here again, the term P(V'rot|Lum ¢ Tphototary) is associated with a set of gaussian distri-
butions. However, for this program, we decided it would be easier to set the few parameter
values a priori.

¢ The result is also satisfactory : the robot quickly orientates itself toward the light source,
and follows it if it is moving in the environment.

More experiments are to be found in [1, 6] : [1] presents a very simple experiment, with one
degree of freedom and one sensory variable, while [6] explores the power of our programming
method, with scores of experiments on the Khepera.

4 Learning how to combine behaviours

With the programming method sketched in the previous sections, we have implemented a “night-
watchman” task”, where the Khepera has to :

e patrol its environment and alert whenever movement is detected,

e alert in case of fire and extinguish it (the fire is simulated by a lit candle, and we added a
mini-fan on top of the Khepera for this task),

e recognize objects, if requested,
e go back to its base when appropriate,

e manage its energy level, by going back to its base to recharge batteries.

The base of the Khepera consists of a recess in its environment with a light over it. Thus, going
back to the base could simply be made by combining a light following and an obstacle avoidance
behaviour. In this section, we first present a program that implements such a combination; we
then show how we recently managed to /earn by experimentation how these behaviours were to
be combined.

4.1 Combining obstacle avoidance with light following

[Specification
- Variables
+ Dir, Prox, Lum, Vrot, H : domain {a, p}, cardinal 2
- Deccomposition
P(Dir Prox Lum H Vrot | A Thomng) =

P(Dir | 7zlmm) P(Prox | T poming) P(Lum | zr,wmmg)

- Parametrical forms
* PDir| my, 00 P(Prox | my), P(Lum | m, .) — Uniforms
*+ P(H}| Prox m,,.;,,) ~— Tables
* P(Vrot | H Dir Prox Lum m,,,...) :
P(Vrot | [H = a] Dir Prox Lum m,,,,,.) = P(Vrot | Dir Prox &, .)

P(Vrot | [H = p] Dir Prox Lum m,;,,) = P(Vrot | Lum 1
Identification

\ - A priori

Question
= Draw(P(Vrot | [Dir=d|] [Prox = p] [Lum = 1] m,,....))

< P(H | Prox 7,) P(Vrot | H Dir Prox Lum 7,)

Description\\

Program
A

phulnlaxy)

@estion

Figure 3. A homing program where the robot follows light while avoiding ob-
stacles on the way.

Figure 3 shows a program implementing a combination of programs obtained from specifica-
tions mqu0iq (the a priori version of our obstacle avoidance behaviour) and Tphototary (the light
following behaviour). Some comments are necessary about it.

“This “nightwatchman” task shows how easily our approach scales to more complex behaviours; please refer to
[6] for a full technical presentation of this program.

o Variables : we keep all variables appearing in specifications 7,,,;4 and Tphototary, and add
a new variable H. It can take two values, « for avoid and p for phototaxy.

¢ Decomposition of the joint distribution : the term P(H|Prox & Thoming) TeSUlts from the
independence hypothesis between H on the one hand, and Dir and Luim on the other hand.
It means that we think the proximity of obstacles is a good enough criterion when deciding
whether to avoid an obstacle or to follow the light.

¢ Parametrical forms : since we do not have any knowledge about the different sensory sit-
uations, terms P(Dir|Tpoming), P(Prox|Thoming) and P(Lum|mpoming) are set to uni-
forms. The term P(H |Prox @ Thoming) is defined a priori, by giving intuitive values : we
define the probability of doing obstacle avoidance, whichis P([H = a]| Prox & Thoming)s
as varying like Prox. Therefore, when Prox is near 0, no obstacle is seen, and the prob-
ability of doing obstacle avoidance is near 0 too. Conversely, high values for Prox mean
an imminent collision, thus a high probability of avoiding the obstacle. The last term of
the decomposition, P(Vrot|H & Dir & Prox & Lum & Thoming), makes the link between
specifications mpoming, Tavoid A0d Tphototary. We state here that, when [H = a], the motor
command V'rot is chosen accordingly to the obstacle avoidance knowledge 7 ,.,;q; other-
wise, [[{ = p], and V'rot follows the light following knowledge Tphototary-

* Question : notice that in the question P(Vrot [[Dir = di][Prox = pi][Lum =l mhoming)»
the set of unknown variables is { }. The inference thus gives :

P(Vrot|[Dir = di][Prox = pr][Lum = l]]Thoming)
= P([H = a]|[Prox = pt]Thoming) X P(Vrot|[Dir = di][Prox = pt]mavoid)
+P([H = pll[Pror = p]Thoming) X P(Vrot|[Lum =)T phototary)

which means that the resulting command is a weighted combination of motor commands
given by the obstacle avoidance and light following programs, and not just a all-or-nothing
kind of combination.

¢ Result: with this program, we successfully combine obstacle avoidance with light follow-
ing. However, as expected, the robot can be stuck in local maxima of the light gradient,
should a U-shaped corridor be taken.

4.2 Learning the combination term

What we show in this section is how it is possible to include learning in the previous program.
Given the two base behaviours, we want to learn how to combine them, which in our system
corresponds to identify the P(H|Prox & A ¢ Thoming) term.

One straightforward solution is to give control to the user via the / variable. When piloting the
Khepera, the user thus commands whether it should follow the light or avoid obstacles, result-
ing in gathering experimental data of the form < dir, prox.lum,h,vrot >. Identification of the
P(H|Prox) NG Thoming) term is then very easy.

For various reasons, we prefered to keep the same piloting method as in the previous experi-
ments, that is to say, the user pilots the robot with the joystick. Therefore, the data gathered is
of the form < dir, prox,lum,vrot >. Notice that the data contains no information about the
variable [{. However, it can be inferred using probability rules, by asking the question

P(H|[Dir = dir] i [Proxr = prox]) & [Lum = lum] & [Vrot = vrot] 0 A & Thoming)-

For clarity purposes, we omit the ¢7 and the 74,4,,i,g symbols in the following expressions :

P(H|DirProxLumVrotA)
P(H DirProx LumV'rot|A)
>t P(HDir Prox LumVrot|A)
E%Zkl—kl—P(H[Pro;rA)P(Vrot[H[)ier‘o;rLum)

Pror NLum

S 5y e e P(H|Prox A)P(Vrot|H Dir Prox Lum)
P(H|ProxA)P(Vrot|H Dir Prox Lum)

, . 2
S P(H|ProxA)P(Vrot|H Dir Prox Lum) @

We see that Equation 2 needs P(H |ProxA), which is the term we want to identify. In order to
simplify further this equation, we choose to consider each experimental datum as if it were the
first seen. We thus set P(H|ProxA) to P(H|Prox2g), which is the initial value of the term,
as defined by the parametrical form and learning mechanism. In our case, the P(H|ProxzA)
term is identical to a uniform distribution; Equation 2 thus becomes

& P(Vrot|H Dir Prox Lum)
S Flg P(Vrot|H Dir Prox Lum)
P(Vrot[HDirPro;ern) . 3)
S P(Vrot|H Dir Prox Lum)

P(H|DirProxLumVrotA)

Equation 3 can be given an interesting intuitive interpretation. It means the probability for H,
given the experimental data < dir, prox,lum,vrot > is

P(H|[Dir = dir][Prox = prox|[Lum = lum][Vrot = vrot]\)
P([Vrot = vrot]|H[Dir = dir][Prox = prox][Lum = luml])
Si P([Vrot = vrot]|H[Dir = dir][Prox = proz|[Lum = [um])’

(4)

Replacing terms in Equation 4 by their definition given Figure 3, we obtain :

P([H = a]|[Dir = dir][Prox = proz][Lum = lum][Vrot = vrot]A)
P([Vrot = vrot]|[Dir = dir][Prox = prox|Tapeid)
P([Vrot = vrot]|[Dir = dir][Prox = proz)mapeiq)
+ P([Vrot = vrot]|[Lum = lum]mphototary)
P([H = pl|[Dir = dir][Proxz = proz|[Lum = lum][Vrot = vrot]A)
P([Vrot = vrot]|[Lum = lum]mphototary)
P([Vrot = vrot]|[Dir = dir][Prox = prox]Taveid)
+ P([Vrot = vrot]|[Lum = lum]mphototary)

The probability distribution for H is thus a comparison of probabilities of the motor command
given by the user, considering the sensory situation, in the context of programs obtained from
specifications 74,0;¢ and Tpporotary. 10 @ sense, it corresponds to context recognition : “in the
current sensory situation, does the motor command vrot looks more like obstacle avoidance or
light following?”.

We therefore obtain a probability distribution over H. We propagate the knowledge it contains
by generating new experimental data. For example, if the inference gave a probability for
[H = a] of 0.82, given some datum < dir,prox,lum,vrot >, we would generate 82

< dir,prox,lum,a,vrot > data, and 18 < dir,proz,lwm, p.vrot > data. We can now easily
learn the P(H|Prox &) A Ci Thoming) term.

We report very satisfactory results from this experiment. We have successfully learned how to
combine obstacle avoidance with light following to obtain a homing behaviour. Notice that our
method is homogeneous with our system used for reactive behaviour programming. Moreover,
we believe it is quite general, since we stated no hypothesis concerning the behaviours to be
combined. One could actually imagine using our system to combine more than two programs.
If we had a /ibrary of base components, we could program a new behaviour by combining them
all using our method, then dropping the ones with lowest (overall) probabilities, until only a few
pertinent behaviours are combined. This tool could provide great help for the designer of the
robot.

A longer description of this experiment is in [4], which also addresses all technical difficulties
not mentioned in this paper.

5 Conclusion

We have presented a robotic programming environment that allows easy programming and com-
bining of behaviours. We have shown that it also nicely included experimental learning. In fur-
ther experiments described in [6], we also have managed, with the same formalism, to do sen-
sor fusion, inverse programming, temporal sequences, and a “nightwatchman” task, which in-
tegrates all these various kinds of descriptions. Future work will aim at including experimental
learning in all these different types of program, so that a whole hierarchy of behaviours could be
learned, from reactive to high level ones. We have in thought to make a Koala robot, our next
experimental platform, become a robotic pet, detecting and chasing intruders, showing visitors
around, carrying or bringing back items from room to room, etc...

Acknowledgements. [t is a great pleasure to thank Pierre Bessi¢ére and Emmanuel Mazer for their careful
readings of this manuscript, this would not have been achieved without their help.

References

[1] Pierre Bessiére, Eric Dedieu, and Emmanuel Mazer. Representing Robot/Environment Interac-
tions Using Probabilities: the “Beam in the Bin” Experiment. Perdc 94 (From Perception to Action);
Lausanne, Switzerland, 1994.

[2] Pierre Bessiére, Eric Dedieu, Olivier Lebeltel, Emmanuel Mazer and Kamel Mekhnacha. Inter-
prétation ou Description | : Proposition pour une théorie probabiliste des systémes cognitifs sensori-
moteurs. Intellectica 1998/1-2, 26-27, pp. 257-311, 1998.

[3] Pierre Bessiére, Eric Dedieu, Olivier Lebeltel, Emmanuel Mazer and Kamel Mekhnacha. Inter-
prétation ou Description 1I : Fondements mathématiques. Intellectica 1998/1-2, 26-27, pp. 313-336,
1998.

[4] Julien Diard. Apprentissage hiérarchique bayesien. Masters Degree Thesis, UJF Grenoble, 1999.

[5] E.T. Jaynes. Probability theory - The logic of science. Unfinished book. Note : Publicly available at
http://bayes.wustl.edu.

[6] Olivier Lebeltel. Programmation bayésienne des robots. PhD Thesis, INP Grenoble, 1999.

