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INTERPOLATION IN THE NEVANLINNA AND SMIRNOV CLASSES AND
HARMONIC MAJORANTS

ANDREAS HARTMANN, XAVIER MASSANEDA, ARTUR NICOLAU, & PASCAL THOMAS

ABSTRACT. We consider a free interpolation problem in Nevanlinna and Smirnov classes and
find a characterization of the corresponding interpolating sequences in terms of the existence of
harmonic majorants of certain functions. We also consider the related problem of characterizing
positive functions in the disk having a harmonic majorant. An answer is given in terms of a
dual relation which involves positive measures in the disk with bounded Poisson balayage. We
deduce necessary and sufficient geometric conditions, both expressed in terms of certain maximal
functions.
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1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. Interpolating sequences for the Nevanlinna Class. Let
�

be a discrete sequence of points
in the unit disk � . For a space of holomorphic functions � , the interpolation problem consists
in describing the trace of � on

�
, i.e. the set of restrictions ��� � , regarded as a sequence space.

One approach is to fix a target space � and look for conditions so that ��� ��� � . An alterna-
tive approach, known as free interpolation, is to require that ��� � be ideal, i.e. stable under
multiplication by �
	 . See [Nik02, Section C.3.1 (Volume 2)], in particular, Theorem C.3.1.4,
for functional analytic motivations. This approach is natural for those spaces that are stable un-
der multiplication by � 	 , the space of bounded holomorphic functions on � . For Hardy and
Bergman spaces both definitions turn out to be equivalent, with the usual choice of � as an �
�
space with an appropriate weight (see [ShHSh], [Se93]).

The situation changes for the non-Banach classes we have in mind, namely the Nevanlinna
class � ��������������� ����� �! #"$&%('*)+-,/.10�23 �!�54�6 � �7�98;:=<?> �@�;ACBEDGFIH
and the related Smirnov class� 6 �����J� � � �! !"$&%(' )+-, . 0�23 �!�54 6 � �7�98;:=<?> �K�-ACB � )+-, . 0�23 �!�54 6 � �7�L:=<?> �@�-ACBMHON

We briefly discuss the known results. Naftalevič [Na56] described the sequences
�

for which
the trace

� � � coincides with the sequence space � Na
��PQ�9R�S � S �UTWVOX S � )(Y �[Z7�[� �#�54 6 � R�S �\D]F_^

(we state the precise result after Proposition 1.12). The choice of � Na is motivated by the fact thatTWVOXa` � )bY �dc\�d� �!�54 6 � �7� c��@�eDfF for
��� �

, and this growth is attained. Unfortunately, the growth
condition imposed in � Na forces the sequences to be confined in a finite union of Stolz angles.
Consequently a big class of Carleson sequences (i.e. sequences such that �*	g� �f� �=	 ), namely
those containing a subsequence tending tangentially to the boundary, cannot be interpolating in
the sense of Naftalevič. This does not seem natural, for �h	 is in the multiplier space of

�
. In a

sense, the target space � Na is “too big”. Further comments on Naftalevič’s result can be found in
[HaMa01] and below, after Proposition 1.12.

For the Smirnov class, Yanagihara [Ya74] proved that in order that
� 6 � � contains the space� Ya

� PQ�9RCS � S �ji S � )kY �dZl�d� �!�54 6 � R�S �jDmF_^ , it is sufficient that
�

is a Carleson sequence.
However there are Carleson sequences such that

� 6 � � does not embed into � Ya [Ya74, Theorem
3] : the target space � Ya is “too small”.

We now turn to the definition of free interpolation.

Definition. A sequence space � is called ideal if �@	j��n]� , i.e. whenever
�9R�o � op� � and

�rqso � ot��=	 , then also
�rqso5R5o � ok� � .

Definition. Let � be a space of holomorphic functions in � . A sequence
� nu� is called free

interpolating for � if �v� � is ideal. We denote
�f�Jwyx�z � .

Remark 1.1. For any function algebra � containing the constants, �v� � is ideal if and only if

� 	 nv��� � N
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The inclusion is obviously necessary. In order to see that it is sufficient notice that, by assump-
tion, for any

�rq S � S1� �=	 there exists � � � such that � � Z\� �uq7S
. Thus, if

�L�7� Z �W� S1� �v� � , the
sequence of values

�rq7S-�7� Z\� � S can be interpolated by
� � � � .

It is then clear that
wyxCz � 6 n wyx�z �

.

Free interpolation for these classes entails the existence of nonzero functions vanishing on all�
except a given Z 3 . Hence the Blaschke condition i S���� � ) Y �dZl�d� DfF is necessary and will be

assumed throughout this paper.

Given the Blaschke product � �v��� S����
	 S
with zero-sequence

�
, denote � SJ� � ����
 S�� �� ��� 	 S . Here

	 S���� �dZl� � Z � � Z Y c�� � ) Y Z c���� ' . Define then� � � c���� � �� � �!�54 � � Se� Z �@� � ' if c � Z �J��
if c ��/�

Definition. We say that a Borel measurable function � defined on the unit disk admits a positive
harmonic majorant if and only if there exists a positive harmonic function � on the unit disk such
that � � c���� � � c�� for any c � � .

Let
��� �=� � � denote the space of harmonic functions in � and

�!� � 6 � � � the subspace of its
positive functions. Consider also the Poisson kernel in � :" � c$#&%e� � " ` � %e� � Re ' %)( c% Y c+* � ) Y �dc\� 0�,% Y c\� 0 N

Our characterization of interpolating sequences for the Nevanlinna class is as follows. Note
that the existence of a harmonic majorant occurs at two junctures: first, to decide which se-
quences of points are free interpolating, second, to identify the trace space that arises for those
sequences which are indeed free interpolating.

Theorem 1.2. Let
�

be a sequence in � . The following statements are equivalent:

(a)
�

is a free interpolating sequence for the Nevanlinna class
�

.
(b) The trace space is given by:� � � � �.-v� �]PQ�9R�S � S �0/1� ����� � 6 � � � such that � � Z �2� �!�54 6 � R�S � , Z �J� ^CN
(c) � � admits a harmonic majorant.
(d) There exists 354 �

such that for any sequence of nonnegative numbers
P76
S ^ ,8S9��� 6
S � � � Z � � 8S���� 6 S �!�54 � � Se� Z �@� � '2: 3ITWVOX; ��<>= 8S���� 6 S " Se� %e� N

We recall that any positive harmonic function on the unit disk is the Poisson integral of a
positive measure on the unit circle,� � c�� � "@?BADC � c�� � . <>= " ` � %Q�MA A � %e�
N

We will say that a harmonic function is quasi-bounded if and only if it admits an absolutely
continuous boundary measure (for the reasons for this terminology, see [He69, pp. 6–7]). The
analogous result for the Smirnov class will, as can be expected, involve quasi-bounded harmonic
functions.
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Let A�� denotes the normalized Lebesgue measure in
� � . Also, for a nonnegative function �

on the unit disk, let � � denote the associated non-tangential maximal function (see (1.1) below).

Theorem 1.3. Let
�

be a sequence in � . The following statements are equivalent:

(a)
�

is a free interpolating sequence for the Smirnov class
� 6

.
(b) The trace space is given by� 6 � � � � -�� � �uPQ�9RCS � S �0/1� �J��� � 6 � � � quasi-bounded �0� � Z\�2� �#�54C6 � R�S � #7Z �J� ^CN
(c) � � admits a quasi-bounded harmonic majorant.
(d)

�! #"o % 	 TWVOX
��	� � ��

� ��� 8S�� ����� S����Co 6 S � � � Z � � �
, where � �9� � denotes the set of nonegative sequencesP76
S ^ such that T VMX; ��<>= iS���� 6
S " Se� %e� : ) .

(e) (i) TWVOX��� 3 � � �yP % ��� �]��� � � � %e� � � ^;��DGF , and

(ii)
�! #"o % 	 iS���� 6 � o��S � � � Z � � �

for any sequence of sequences of nonnegative numbersP76 � o��S ^ � � �9� � such that
�! #"o % 	 iS���� 6 � o��S " SQ� %e� � �

almost everywhere on
� � .

The classical Carleson condition characterizing interpolating sequences for bounded analytic
functions in the unit disk is TWVMX = � � D F , hence statements (c) in both results above can be
viewed as Carleson-type conditions.

In view of Theorems 1.2 and 1.3, it seems natural to ask whether the measure
A

such that� � : "@?,A+C
can be obtained from

�
in a canonical way. We do not have an answer to this

question, but with Propositions 1.12 and 1.13 it is easy to construct examples that discard natural
candidates, such as the (weighted) sum of Dirac masses

A � i S � )kY �[Z7�[� � S�!#" S$" , or Poisson
balayage measures A�% � i S � ) Y �[Z7�[� " Se� %e�MA�� � %e� (see definition below).

1.2. Positive harmonic majorants. The conditions in Theorems 1.2 and 1.3 (d) arise in the
solution of a problem of independent interest:

Problem. Which functions � ��� Y &(' 6 admit a (quasi-bounded) harmonic majorant?

Answers to this problem lead to rather precise theorems about the permissible decrease of the
modulus of bounded holomorphic functions, e.g. Corollary 1.5 below. See [Hay], [LySe97];
[EiEs] also provides a survey of such results. The existence of harmonic majorants is relevant
as well to the study of zero-sequences for Bergman and related spaces of holomorphic functions
[Lu96].

An answer to the problem of positive harmonic majorants can be given in dual terms (see
[BNT] for another characterization). The Poisson balayage (or swept-out function) of a finite
positive measure

A
in the closed unit disk is defined as� � A � � %e� � . = " ` � %e� A A � c5� % ��� �(N

We will be interested in the class of measures having bounded balayage. Recall that Carleson
measures are those finite positive measures whose balayage has bounded mean oscillation (see
[Gar81, Theorem VI.1.6, p. 229]); this is also an easy consequence of the � ' -BMO duality
(see [Gar81, Theorem VI.4.4, p. 245]). Hence positive measures with bounded balayage form a
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subclass of the usual Carleson measures. It is easy to see (cf. Section 6) that positive measures
with bounded balayage are precisely those which operate against positive harmonic functions,
that is, those measures

A
for which there exists a constant 3 � 3 � A � such that

. = � � c�� A A � c�� : 3 � � � �
for any positive harmonic function in the unit disk � .

Define

�G� �uP A
positive Borel measures on � such that TWVMX; ��<>= � � A � � %e� : ) ^CN

Theorem 1.4. Let � be a nonnegative Borel function on the unit disk � . The following statements
are equivalent:

(a) There exists a (positive) harmonic function � such that � � c5� : � � c5� for all c � � .
(b) There exists a constant 3 � 3 � � � such that

TWVMX� ��
 . = � � c��MA A � c�� : 3 N
The necessity of condition (b) is obvious (e. g. 3 � � � � � ), while the sufficiency follows

from a convenient version of a classical result in Convex Analysis, known as Minkowski-Farkas
Lemma. The characterization of interpolating sequences in the Nevanlinna class in dual terms
given by condition (d) in Theorem 1.2 follows from this result.

This can be applied to study the decrease of a non-zero bounded analytic function in the disk
along a given non-Blaschke sequence.

Corollary 1.5. Let
�

be a separated non-Blaschke sequence and
���CS � S���� a sequence of positive

values. Then there exists a non-zero function
� � � 	 � � � with � �7� Z �@�aD �;S

, Z �*� , if and only
if
�

is the union of a Blaschke sequence and a sequence
�

for which there exists a universal
constant 3 � 3 � � � such that 8

� ��� 6 � �!�54�� � '� : 3ITWVMX; ��<�= 8
� ��� 6 � " � � %Q�

for any sequence of nonnegative numbers
� 6 � � � ��� .

In a similar way, Theorem 1.3 (d), (e) are obtained as an application of the following analogue
of Theorem 1.4 for quasi-bounded harmonic functions (i.e. for the Smirnov class).

Theorem 1.6. Let � be a nonnegative Borel function on the unit disk � . The following statements
are equivalent:

(a) There exists a (positive) quasi-bounded harmonic function � such that � � c5� : � � c�� for
all c � � .

(b) There is a convex increasing function � � ? � # Ff� & ? � # Ff� with
�! !"� % 	 � � � � � � � ( F such

that �
	 � admits a harmonic majorant on � ;

(c)
�! #"o % 	 T VMX� ��
 . 
 � �Co9� � A A � �

.
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(d) (i) TWVOX��� 3 � � �yP % ��� �]��� � � %e� � � ^;� DvF , and

(ii)
�! #"o % 	 . = � A A o1� �

for any sequence
P A o ^gn � such that

�! #"o % 	 � � A o � � %e� � �
almost

everywhere on
� � ,

Condition (b) is inspired by a characterization of quasi-bounded harmonic functions given in
Armitage and Gardiner’s book [ArGa, Theorem 1.3.9, p. 10].

For the problem of harmonic majorants it is desirable to obtain criteria which, although only
necessary or sufficient, are more geometric and easier to check than the duality conditions of
Theorems 1.4 and 1.6.

Recall that the Stolz angle with vertex % ��� � and aperture � is defined by��� � %e� � �uP c � �u� � c Y % � : � � ) Y � c\� 0 � ^CN
In our considerations the angle � is of no importance, so we will write

� � %e� for the generic Stolz
angle with aperture � . Given a function

�
from � to ' 6 , the non-tangential maximal function is

defined as

(1.1) � �7� %e� � � TWVMX��� ; � � N
Recall that � denotes the normalized Lebesgue measure on

� � . Consider the weak-
� '

space� '� � � ��� �IP;�
measurable ��TWVOX��� 3 � � �&P %1� � �7� %Q�K� 4 � ^ DfF_^;�

and let � '��� 3 � � � � �uP;�
measurable � �! #"� % 	 � � �&P %1� � �7� %e�@� 4 � ^;� � � ^CN

It is well-known that the non-tangential maximal function of the Poisson transform of a pos-
itive finite measure belongs to

� '� (see [Gar81, Theorem 5.1, p. 28]). A more careful analysis
shows that if

A
is absolutely continuous, then its Poisson transform is in

� '��� 3 . This and some
easy estimates imply the following result.

Proposition 1.7. (a) If � admits a harmonic majorant, then � � � � '� �	� ��� .
(b) If � admits a positive quasi-bounded harmonic majorant, then � � � � '��� 3 �	� ��� .
(c) If � � � � ' �	� � � , then the function � admits

"@? � � C � � "@? � � A�� C as a quasi-bounded
harmonic majorant.

As far as necessary conditions are concerned, there is a way to improve the previous result by
using the Hardy-Littlewood maximal function. Given

� � �
, this is defined as�	�
��
 ��� � TWVMX )� ��� � .�
 � #

where the supremum is taken over all arcs
�

containing



.

For � � �
define ��� � %e� � � TWVMX` � = � � c���� �
�� � %e� � T VMX` � = � � c��bTWVMX
 � ; � 
 � ������� ` �

� ��� � #
where ��� is the characteristic function of a set � and

� ` is the “Privalov shadow” interval

(1.2)
� ` � �]P % � � �u�Cc � � � %Q� ^CN
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Proposition 1.8. (a) If � admits a harmonic majorant, then � � � � '� � � ��� .
(b) If � admits a quasi-bounded harmonic majorant, then � � � � '��� 3 � � � � .

We will give some examples in Proposition 7.4 that show that this is indeed stronger than
the necessary condition given in the first part of Proposition 1.7, but still falls short of giving a
sufficient condition for the existence of a harmonic majorant.

1.3. Geometric criteria for interpolation. We would like to obtain some geometric implica-
tions of the analytic conditions given in Theorems 1.2 and 1.3. To begin with, we would like to
state the maybe surprising result that separated Blaschke sequences (with respect to the hyper-
bolic distance) are interpolating for the Smirnov class (and hence the Nevanlinna class). Recall
that a sequence

�
is called separated if � �9� � � �  !x��S��� S���� � Z # Z	� �24 �

, where

� � c$#�
�� � � � 	 ` � 
j�K� �
����
c Y 


) Y c 

����
#

is the pseudo-hyperbolic distance.

For such sequences, the values
�!��4 � � Se� Z �@� � ' can always be majorized by the values at Z ���

of the Poisson integral of an integrable function (see Proposition 4.1), thus the following corollary
is immediate from Theorem 1.3.

Corollary 1.9. Let
�

be a separated Blaschke sequence. Then
�f�Jwyx�z � 6

(hence
�G�Jwyx�z �

).

More precise conditions can be deduced from Propositions 1.7, 1.8 and (c) in Theorems 1.2
and 1.3.

Corollary 1.10. Let
�

be a sequence in � .

(a) If
�f�Jwyx�z �

then � �� � � '� �	� �j� . If
�f�Jwyx�z � 6

then � �� � � '��� 3 � � � � .
(b) If � � �t� � ' � � � � then

� �/wyxCz � 6
(and hence

� �/wyxCz �
).

Notice that the necessary conditions obtained by replacing � �� by � � � in (a) also hold. This
in an immediate consequence of the estimate � �� � � � � .

This result implies the following Carleson-type conditions.

Corollary 1.11. (a) If
�G�Jwyx�z � 6

, then�# !"" S " %(' � ) Y �dZl�d� �!�54 �,� Se� Z\�K� � ' � � N(1.3)

(b) If
�G�Jwyx�z �

, then TWVMXS9��� � ) Y �dZl�d� �!�54 �,� Se� Z\�K� � ' DGF N(1.4)

(c) If
�

is Blaschke and 8S9��� � ) Y �dZl�d� �!�54 �,� Se� Z\�K� � ' DfF #(1.5)

then
�G�Jwyx�z � 6

(and so
�f�/wyxCz �

as well).
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Condition (1.3) already appeared in [Ya74, Theorem 1] as a necessary condition for the se-
quence space � Ya (as defined in the beginning of Section 1.1) to be included in the trace of

� 6
.

Condition (1.4) is discussed in Proposition 1.12 and the corollary thereafter.

In some situations the conditions above are indeed a characterization of interpolating se-
quences. For instance, the weak

� '
-condition characterizes interpolating sequences lying on

a radius, while for sequences approaching the unit circle very tangentially the characterization is
given by the strong

� '
-condition. This is collected in the next results.

Proposition 1.12. Assume that
� nv� lies in a finite union of Stolz angles.

(a)
�f��wyx�z � 6

if and only if (1.3) holds.
(b)

�f��wyx�z �
if and only if (1.4) holds.

It should be mentioned that (b) can also be derived from Naftalevič’s result [Na56, Theorem
3]. On the other hand, his full characterization of the sequences such that

� � � � � Na can also be
deduced from Theorem 1.2.

Corollary (Naftalevič, 1956).
� � � � � Na if and only if

�
is contained in a finite union of Stolz

angles and (1.4) holds.

Let us consider the other geometric extreme, sequences which in particular only approach the
circle in a tangential fashion. Write

(1.6)
A � � � 8 S � ) Y �dZl�d� � S #

where � S stands for the Dirac measure at Z .

Proposition 1.13. If
A �

has bounded balayage, then
�I� wyxCz �

if and only if
�I� wyx�z � 6

, and
if and only if (1.5) holds.

Note that the condition that
A �

has bounded balayage implies in particular that
�

approaches
the circle tangentially. In Section 8, we will see more concrete conditions of geometric separation
which are sufficient to imply that

A �
has bounded balayage (Proposition 8.2).

When
A �

has bounded balayage, the trace space will embed into Yanagihara’s target space.
More precisely, the following result holds.

Proposition 1.14. The following are equivalent:

(a)
� � � nG� Ya,

(b)
� 6 � � nG� Ya,

(c)
A �

has bounded balayage, i.e. T VMX ; ��<>= i S � ) Y �dZl�d� " S�� %e� DGF .

Yanagihara considered the sequences such that
� 6 � � � � Ya. These are automatically inwyx�z � 6

, since for any Blachke sequence � Ya
� � 	 . Conversely, Lemma 8.1 (see Section 8)

implies that � Ya n � -�� , thus if
� � wyx�z � 6

, then by Theorem 1.3(b)
� 6 � ��� � Ya. Therefore

Theorem 1.3 characterizes in particular the sequences studied by Yanagihara.

Altogether, free interpolation for the Nevanlinna and Smirnov classes can be described in
terms of the intermediate target spaces � - and � -�� . Notice first that always

� 6 � � n � - � and
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�G��wyx�z � 6

if and only if
� 6 � � �� - � , and

�f�Jwyx�z �
if and only if

� � � � � - . Observe also that � Ya nG� - � nG�.-vnG� Na.

The paper is organized as follows. The next section is devoted to collecting some basic results
on functions in the Nevanlinna class. In Section 3 we prove the sufficiency for interpolation of
the conditions (c) of Theorems 1.3 and 1.2. We essentially use a result by Garnett allowing inter-
polation by � 	 functions on sequences which are denser than Carleson sequences, under some
decrease assumptions on the interpolated values. In Section 4 we study the necessity of these
conditions. We first observe that in the product � SQ� Z � appearing in Theorem 1.2, only the fac-
tors

	 SQ� Z � � with Z � close to Z are relevant. Then we split the sequence into four pieces, thereby
reducing the interpolation problem, in a way, to that on separated sequences. The trace space
characterization will be discussed in Section 5. In Section 6 we consider measures with bounded
balayage, show that they operate against positive harmonic functions and prove Theorems 1.4
and 1.6. In Section 7, we prove Proposition 1.8, and provide examples to show that the sufficient
condition is not necessary, and the necessary condition not sufficient. Section 8 is devoted to
the proofs of Corollary 1.11, Propositions 1.12, 1.14, and 1.13, as well as the deduction of Naf-
talevič’s result from Theorem 1.2. Also, we give examples of measures with bounded balayage.
In the final section, we exploit the reasoning of Section 3 to construct non-Carleson interpolating
sequences for “big” Hardy-Orlicz classes.

Acknowledgements. The authors wish to express special thanks to Jean-Baptiste Hiriart-
Urruty for introducing them to Farkas’ Lemma, to Stephen Gardiner for pointing out an ef-
ficient characterization of quasi-bounded harmonic functions, and to Alexander Borichev for
Lemma 6.6, and his discussions with us about harmonic majorants.

2. PRELIMINARIES

We next recall some standard facts about the structure of the Nevanlinna and Smirnov classes
(general references are e.g. [Gar81], [Nik02] or [RosRov]).

A function
�

is called outer if it can be written in the form�7� c�� � 3 ��� X � . <>= %!( c% Y c �#�54��\� %e� A�� � %e���0#
where �,3 � � ) , � 4 �

a.e. on
� � and

�!�54	�g� � ' �	� �j� . Such a function is the quotient
� �_� ' �5� 0of two bounded outer functions

� ' # � 0 � � 	 with 
 � < 
 	 : ) , � � ) # + . In particular, the weight�
is given by the boundary values of � � ' �5� 0 � . Setting 
 � �!��4��

, we have�#�54 � � � c��K� � " ? 
 C � c5� � . <�= " ` � %e� 
 � %e� A�� � %e�
N
This formula allows us to freely switch between assertions about outer functions

�
and the asso-

ciated measures 
(A�� .

Another important family in this context are inner functions:
� � �h	 such that � � � � ) almost

everywhere on
� � . Any inner function

�
can be factorized into a Blaschke product � �

carrying
the zeros

� �]P Z o ^ o of
�
, and a singular inner function 
 defined by


 � c�� � ��� X � Y . <>= %�( c% Y c A A � %e� � #
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for some positive Borel measure
A

singular with respect to Lebesgue measure.

According to the Riesz-Smirnov factorization, any function
�J� � 6

is represented as� � � � 
 � '� 0 #
where

� ' # � 0 are outer with 
 � ' 
 	 # 
 � 0 
 	 : ) , 
 is singular inner, � is a Blaschke product and� � � � ) . Similarly, functions
�J� �

are represented as�p� � � 
 ' � '
 0 � 0 #
with

� < outer, 
 � < 
 	 : ) , 
 < singular inner, � is a Blaschke product and � � � � ) .
In view of the Riesz-Smirnov factorization described above, the essential difference between

Nevanlinna and Smirnov functions is the extra singular factor appearing in the denominator in
the Nevanlinna case. This is reflected in the corresponding result for free interpolation in

�
by

the fact that � � is bounded by a harmonic function, not necessarily quasi-bounded.

3. FROM HARMONIC MAJORANTS TO INTERPOLATION

For a given Blaschke sequence
� n � set � Sp� �,� SO� Z\�K� . The key result to the proof of the

sufficient condition is the following theorem by Garnett [Gar77], that we cite for our purpose in
a slightly weaker form (see also [Nik02] as a general source, in particular C.3.3.3(g) (Volume 2)
for more results of this kind).

Theorem. Let �u� ? � # Ff� Y & ? � # Ff� be a decreasing function such that
� 	3 � � � �MA � D]F . If a

sequence
R � �9RCS � S satisfies

� R�S � : � S � � �!�54 :� S � # Z �/� #
then there exists a function

�J� � 	 such that
� � � � R

.

Observe that according to our former notation we have
�#�54U�L: � � S � � ) ( � � � Z � .

As we have already noted in Remark 1.1, in order to have free interpolation in the Nevanlinna
and Smirnov classes, it is sufficient that �K	 n � � � and �
	 n � 6 � � respectively. Our aim will
be to accommodate the decrease given in Garnett’s result by an appropriate function in

�
or
� 6

.
This is the crucial step in the proof given hereafter of the sufficiency of conditions (c) in both
Theorems 1.3 and 1.2.

Proof of sufficiency of 1.3 (c) and 1.2 (c). The proof will be presented for the more difficult case
of the Nevanlinna class. So, assume that � �I�!� � 6 � ��� majorizes � � . Then � is the Poisson
integral of a positive measure

A
on the circle and the function

(3.1) � � c�� � . <>= %)( c% Y c A A � %e�
has positive real part in the disk. By Smirnov’s theorem, � is an outer function in some � � ,

� D ) , and therefore in
� 6

(see [Nik02], in particular A.4.2.3 (Volume 1)). Also � � X � � � is in the
Nevanlinna class. By assumption we have

�!�54a� ) � � S � : Re � � Z\� , Z �J� .
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Take now � � � � � � ) ( � �&� 0 , which obviously satisfies the hypothesis of Garnett’s theorem,
and set � � � + ( � � 0 , which is still outer in

� 6
. We have the estimate

�d� � Z\�K� � � + ( � � Z �@� 0 � � + ( Re � � Z\� � 0 � � ) ( �#�54 :
� S � 0 � )� �9�#�54a�9: � � S �W� #

hence the sequence
���OS � S defined by�eS�� )� � Z\� � � �!�54U�9: � � S � � # Z �J� #

is bounded by ) .
In order to interpolate an arbitrary

q � �rq7S � S � � 	 by a function in
�

, splitqsSj��� qsS��eS ��� X � Y � � Z �W�� S � S � �9�!��4 :
� S ����� � � Z ���� X � Y � � Z �W� N

Since by hypothesis
� q S��eS ��� X � Y � � Z �W� � � S � S is bounded, we can apply Garnett’s result to

interpolate the sequenceR�Sj� q S��eS ��� X � Y � � Z �W�� S � S � �9�#�54 :
� S � # Z �J� #

by a function
��� � 	 . Now 	 �_� � ��� X � � � is a function in

�
with 	p� � �Gq

.

The proof for the Smirnov case is obtained by observing that if the measure
A

is absolutely
continuous, then � � X � � � is in the Smirnov class and so is the interpolating function 	 . 


4. FROM INTERPOLATION TO HARMONIC MAJORANTS

We first show that in order to construct the appropriate function estimating
�!�54 � � Se� Z �@� � ' we

only need to consider the factors of � S given by points Z � � � which are close to Z . This is in
accordance with the results for some related spaces of functions [HaMa01, Theorem 1], and it
obviously implies Corollary 1.9.

Proposition 4.1. Let
�

be a Blaschke sequence. For any � � � � # ) � , there exists a quasi-bounded
positive harmonic function � � " ? 
 C , 
 � � ' �	� � � , such that

Y �!��4 �S�� � � S � ` ����
 � 	 SQ� c��K� : � � c�� # c � �
#
and therefore an outer function � � � 6

, where � � ��� X � Y � � and � is given by (3.1) withA A � 
�A�� , such that �S�� � � S � ` ����
 � 	 Se� c��@� � ��� � c��K� # c � � N
Proof. We shall use the intervals

� ` introduced in (1.2). In [NPT, p. 124, lines 3 to 17], it is
proved that the function 
 given by


 � %e� � 6 3 8S���� � 
 � � %e� #
where

6 3 is an appropriate positive constant, is suitable. At this juncture, the separation hypoth-
esis made in [NPT, Lemma 4] is no longer used. 
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Proof of the necessity of 1.3 (c) and 1.2 (c). We will use a dyadic partition of the disk: for any �
in
�

, let

(4.1)
� o � � � �IP-:=<?> �CB � ? +-,��M+ � o # +-, � � ( ) � + � o � ^�# � : � D + o N

and the associated Whitney partition in “dyadic squares”:

(4.2) � o � � � �uP@8;: <?> � : <?> � � o � � # ) Y + � o :f8 D ) Y + � o � ' ^CN
Observe that the hyperbolic diameter of each Whitney square � o � � is bounded between two
absolute constants.

We split the sequence into four pieces:
�����	� < � ' � < such that each piece

� < lies in a union of
dyadic squares that are uniformly separated from each other. More precisely, set� ' � � � �

� ' � #
where the family �

� ' �
is given by

P � 0 o � 0 � ^ o � � (for the remaining three sequences we respectively
choose

P � 0 o � 0 � 6 ' ^ o � � , P � 0 o 6 ' � 0 � ^ o � � and
P � 0 o 6 ' � 0 � 6 ' ^ o � � ). In order to avoid technical difficulties

we count only those � containing points of
�

(in case
� � � is empty there is nothing to prove).

In what follows we will argue on one sequence, say
� ' . The arguments are the same for the other

sequences.

Our first observation is that, by construction, for � # � � � � ' �
, ��
� �

,

� � � # � ��� �  #x �` �
� � � ��� � � c$#�
��2� � 4 � #
for some fixed � . In what follows, the letters � , � ... will stand for indices in

� 0 of the form� � # �9� # � : �bD + o
. The closed rectangles ��� are compact in � so that

� ' � ��� can only contain
a finite number of points (they contain at least one point, by assumption). Therefore� D����(� � "g #xS������������ �,� SQ� Z �@�
(note that we consider the entire Blaschke product � S associated with

��� P Z ^ ). Take Z '� � � �
such that ��� � �,� S �� � Z '� �@� .

Assume now that
�f�Jwyx�z �

. Since �
	]n � � � , there exists a function
� ' � � such that

� ' � Z � � �� � ) if Z � P Z '� ^!��
if Z �� P Z '� ^!�@N

By the Riesz-Smirnov factorization we have

(4.3)
� ' � � ����
 S �� �"� � '� 0 # 0 #where

# 0 is singular inner, � ' is some function in ��	 and � 0 is outer in �J	 . Again, we can
assume 
�� < 
 	 : ) , � � ) # + . Hence

) � � � ' � Z '� �@� : �,� ����
 S �� �"� � Z '� �@� � )�,� 0 � Z '� � # 0 � Z '� �@� #and � � ����
 S �� �"� � Z '� �@��� �,� 0 � Z '� � # 0 � Z '� �@� # � � � N
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Since � 0 # 0 does not vanish and is bounded above by 1, the function
�!�54 �B� 0 # 0 � is a negative

harmonic function. By Harnack’s inequality, there exists an absolute constant
6 � ) such that

)6 � �#�54 �B� 0 � Z '� � # 0 � Z '� �K�!� : � �!��4 �B� 0 � c5� # 0 � c��@�#� : 6 � �#�54 �B� 0 � Z '� � # 0 � Z '� �K�!� # c � � � #
hence �,� 0 � Z '� � # 0 � Z '� �@� � : �,� 0 � c�� # 0 � c��@� : �B� 0 � Z '� � # 0 � Z '� �K� ' ! � # c � � � N
This yields � � � 0 # 0 � � � Z � �K� : � � � 0 # 0 � � Z '� �K� : � � ����
 S �� �"� � Z '� �K�(4.4)

for every Z � �J� ' � � � .
Let us now exploit Proposition 4.1. By construction, the sequence

P Z '� ^!�1n � ' is separated.
Therefore, there exists an outer function � ' in the Smirnov class such that� � 
 S �� �"� ��
 S �� � � Z '� �@� ����� ' � Z '� �@� # � � � N
Again, � ' is a quotient of two bounded outer functions and we can suppose that � ' is outer in�J	 with 
 � ' 
 	 : ) . Also, we can use Harnack’s inequality as above to get��� ' � Z '� �@��� ��� � ' � Z � �K�
for every Z � �J� '�� � � . This together with (4.4) and our definition of Z '� give�,� � ��
 S � �
� Z � �K� � � � ����
 S �� � � Z '� �@� � �,� ����
 S �� �"� � Z '� �K� �M�,� 
 S �� �"� ��
 S �� � � Z '� �K�� � � � 0 # 0 � � � Z � �@� �M� � � ' � Z � �@�
for every Z � � � � and � � � � � ' �

. Set � ' � � � 0 � ' � � and 
 ' � # �
0 ; by construction, � ' is outer

with 
 � ' 
 	 : ) and 
 ' is singular inner.

Construct in a similar way functions � < , 
 < for the sequences
� < , � � + #��$#�� , and define the

products � � � �< � ' � < and 
 � � �< � ' 
 < . Of course � is outer in ��	 , and 
 is singular inner. So,
whenever Z � �J� , there exists

� � P ) # + #��$#��Q^ such that Z � �/� � , and hence

(4.5) �,� Se� Z\�K� ��� � � � Z � 
 � � Z �@��� � � � Z\� 
 � Z �@� N
Therefore, the positive harmonic function � � Y �!��4 � � 
�� satisfies � � Z\�2� Y �#�54 �,� Se� Z\�K� . The

proof for
� 6

goes along the same lines, except that singular inner factors do not occur in (4.3),
and so will not appear in (4.5) either. 


5. THE TRACE SPACES

In this short section we prove the trace space characterization of free interpolation given in
Theorems 1.2 and 1.3.

In order to see that (b) in each theorem implies free interpolation it suffices to observe that�=	]nG� - � nG�.- and use Remark 1.1.

For the proof of the converse, we will only consider the situation in the Nevanlinna class, since
the case of the Smirnov class is again obtained by removing the singular part of the measure and
the singular inner factors.
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Assume that
�9RCS � S�� � � � and that

� � �
is such that

� � Z � � RCS
, Z �f�

. Since
�

can be
written as

� � � ' �M� 
 0 � 0 � , where
� ' � �J	 , 
 � ' 
 	 : ) , 
 0 is singular inner with associated

singular measure
A��

, and
� 0 � �J	 is an outer function with 
 � 0 
 	 : ) , we can define the

positive finite measure
A �_�#�54U� ) � � � 0 �[�MA��0(hA A�� which obviously satisfies

"@?BA+C � Z � � �!��4 6 � R�S � ,Z �J� .

Conversely, suppose that
�9ReS � S is such that there is a positive finite measure

A
with

" ?,A+C � Z � ��!��4 6 � R�S � . The Radon-Nikodym decomposition of
A

is given by A A � 
�A�� (fA A�� , where 
 �
� ' � � � � is positive and

A��
is a positive finite singular measure. Let 
 be the singular inner

function associated with
A��

, and let
�

be the function defined by�7� c�� � � � X ' . <�= %)( c% Y c 
 � %e�MA�� � %e� * # c � � N
By definition,

�
is outer in

� 6
and 	 � � � 
 � �

. Clearly,
�!��4 6 � R�S � : �!�54 � 	 � Z\�K� , thus� R�S � : ��	 � Z �@� . Since

� � � is ideal by assumption, there exists
� 3 � � interpolating

�LRCS � S . 

6. HARMONIC MAJORANTS AND MEASURES WITH BOUNDED BALAYAGE

Let us start by proving that positive measures with bounded balayage are precisely those which
operate against positive harmonic functions. Recall that � � A � � %e� � � = " ` � %Q� A A � %e� and

�G� �uP A
positive Borel measures on � such that TWVMX; ��<>= � � A � � %e� : ) ^CN

Proposition 6.1. Let
A

be a positive Borel measure on the disk. Then
� = �aA A is finite for any

positive harmonic function � on the disk if and only if there exists some
6 4 �

such that
A

has
balayage uniformly bounded by

6
. Furthermore, the relevant constants are related:

T VMX; ��<>= � � A � � %e� � TWVOX � . = �aA A � � �J��� � 6 � � � #&� � � � � )�� #
and for any positive harmonic function � ,� � � � �_" � �� ��
 . = �aA A N
Proof. Let � � "@? % C , where % � �

is a measure on
� � . If

A
has balayage bounded by

6
,

. = � � c�� A A � c�� � . <>= . = " ` � %e� A A � c�� A�% � %Q� : 6 % �	� � � � 6 � � � � N
Conversely, since c��& " ` � %e� is a harmonic function for any fixed % ,

� = " ` � %e�MA A � c�� is pointwise
defined. Pick a sequence % o such that�# !"o % 	 . = " ` � % o �MA A � c5� � T VMX; ��<>= . = " ` � %e�MA A � c5� #
where the supremum on the right hand side might a priori be infinite. Since the set � � � P � ���� � 6 � ���t� � � � � � ) ^ is uniformly bounded on compact sets in � , a normal family argument
shows that TWVOX P � = �aA A �$� � �1^ D_F . Observe that the mapping c	�& " ` � % o � is in � for every% o , � � � . Hence T VMX o � = " ` � % o � A A � c���DfF .

This proves that
A

has bounded balayage, and the equalities between constants that we had
announced. 
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The next result is a refined version of Theorem 1.4 stated in the introduction.

Theorem 6.2. Let � be a nonnegative Borel function on the unit disk. Then there exists a har-
monic function � such that � � c��2� � � c�� for any c � � if and only if

(6.1) � � � � TWVMX� ��
 . = � A A DfF N
Furthermore,

� �E�_ #x �\P � � � ����� ���!� �K� ��� # � � � ^ N
That (6.1) is necessary is clear from the above considerations. In order to prove that it is

sufficient, we will reduce ourselves to a discrete version of it. We will use the dyadic squares
introduced in (4.2). As in the previous section, choose a point c o � � in each square, sayc � � o � � � � c o � � � � � ) Y + � o � ��� X � +@, �M+ � o �
N

Observe that by Harnack’s inequality, there exists a universal constant � such that : if c$# c � lie
in the same Whitney square � o � � (as defined in (4.2)), then � � ' " ` � � %Q� : " ` � %Q� : � " ` � � %e� , for
any % ��� � .

Lemma 6.3. The function � satisfies condition (6.1) if and only if there exists a constant � ��
such that for any sequence of nonnegative coefficients

P76=o � � ^ such that

(6.2) TWVMX; ��<>= 8 o � � 6 o � � " `���� � � %Q� : ) #
then

(6.3)
8 o � � 6 o � � TWVMX� ��� � � : � �� N

Furthermore, 3 � ' � �@: � �� : 3 � �
, where 3 4 ) is an absolute constant.

Proof of Lemma 6.3. Pick c �o � � � � o � � such that � � c �o � � �2� � TWVOX � ��� � � � � + and define the measureA � � i o � � 6 o � � � `����� � . Then, if
P76 o � � ^ satisfies (6.2),� � A � � %e� � . = " ` � %e�MA A � c�� � 8 o � � 6 o � � " ` ���� � � %e� : �

8 o � � 6 o � � " ` ��� � � %e� : �JN
So if � satisfies (6.1),8 o � � 6 o � � TWVMX� ��� � � : + 8 o � � 6 o � � � � c �o � � � � + . = � A A : + � � � N
The converse direction is easier, and left to the reader (it also follows from the proof of the
theorem, below). 


We now need a classical result in convex analysis. Recall that the convex hull of a subset� n '
	 is defined as

� �5x
� ��� ��� ��� -8 < � ' � < R < � R < ��� # � < � � # 8 < � < � ) HON
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If we write ' 6 � � �uP Z 
 �eZ � � # 
/��� ^ , then the conical convex hull of
�

is defined as

� �5x � ��� � � � � �5x
� � ' 6 � � � � -8< � ' � < R < � R < ��� # � < � � H N
When

�
is a finite set, the conical convex hull is equal to its closure:

� �5x � � � � � � �5x � � � �
(for this and other facts, see [HULL]). The key fact for us will be the generalized form of the
Minkowski-Farkas Lemma (see [HULL, Chapter III, Theorem 4.3.4]) that we cite here only for
finite

�
. Let

� � #���� stand for the standard Euclidean scalar product in ' 	 .

Theorem 6.4. Let
�9R � # 	 �
� � ' 	�� ' , ) : � : �

, be such that � � �uP 
J� ' 	 � � R � # 
 � : 	 �K^ 
��
. Denote

� � � PQ�LR �7# 	 �
� # ) : � : � ^kn ' 	�� ' . Then the following properties are equivalent
for

� � # 8 � � '
	 � ' :

(a) For any

J� � ,

� � # 
 � :f8
.

(b)
� � # 8 � � � �5x � ��� � .

We will use the following special case. For a vector
� � ' 	 , the coordinates are denoted by� <

, ) : � : A . Also, ' 	 6 denotes the set of points of ' 	 with nonnegative coordinates.

Corollary 6.5. Given
R � � ' 	 , ) : � : �

, let � 6 � � P 
 � ' 	 6 � � R � # 
 � : ) ^ , and suppose
that � 6 
� �

. Then the following properties are equivalent for
� � ' 	 6 :

(a) For any

J� � 6 ,

� � # 
 � : ) .(b) There exist � �)� � # ) : � : �
such that i -� � ' � � � ) and for any � � ) #=N
N
N�# A ,� < : -8

� � ' � � R <� N
Proof. Let

P-: < ^ '	� < � 	 be the canonical basis of ' 	 and consider
� � �]PQ�LR �9# ) � # ) : � : � ^ � PQ� Y : < # � � # ) : � : AM^CN

Then � 6 corresponds to the � in Theorem 6.4, from what we see that (a) implies that there exist
� ��� � #�
 < � �

, ) : � : �
, ) : � : A , such that

� � # ) � � -8
� � ' � � �9R �7# ) � Y 	8 < � ' 
 < �L: < # � �
N

When applied to each coordinate, this yields ) � i -� � ' � � and� < � -8
� � ' � � R <� Y 
 < : -8

� � ' � � R <� N
The converse implication is immediate. 

Proof of Theorem 6.2. Suppose that � satisfies (6.1). For each nonnegative integer � , we defineR ��� � � " ` ��� � � ��� X � �"� � + �
� +-, �W��� 3 � o � �3 � ��� 0 � � ' for

� : � : + � Yf) #
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Ag� � i �o � 3 + o and

� 6 � � �OP76 o � � ^ 3 � o � �3 � ��� 0 � � ' � ' 	 6 �83 � o � �3 � ��� 0 � � '
6 o � � " ` ��� � � ��� X � �"� � + �
� +@, �W� : ) # for ) : � : + � Yf) H N

Obviously, � 6 is not empty: for instance
6 3 � 3 � ) and

6 o � � � �
for � � ) gives a point in � 6 .

We claim that any
P76 o � � ^ � � 6 will satisfy (6.2) up to a constant. Indeed, for any B � ? � # +-, � ,

there is an index �vD + � so that � � + �
� +-, : B D � � ( ) � � + �
� +-, , therefore by Harnack’s
inequality, for any c such that � c\� : ) Y + �
� ," ` �L: < > � � " `������ � < � ��� 0 �
	 0�2 � > � � � ��� X � � � � + �
� +-, �W� : � " ` � ��� X � � � � + �
� +-, � N
Therefore

P � � ' 6 o � � ^ satisfies (6.2), and by Lemma 6.3 and the hypothesis, � satisfies (6.3) with
constant � � �� . Corollary 6.5 then implies the existence of positive coefficients

� � �� � 0 	 � '� � 3 with
sum equal to � � �� , such that

T VMX� ��� � � : 0 	 � '8
� � 3 � �� " ` ��� � � ��� X � �"� � + �
� +@, �W� � . <>= " ` ��� � A�% � #

where % � is the discrete measure on the circle given by the following combination of Dirac
masses:

% � � 0 	 � '8
� � 3 � �� � ����� � < ��� 0 ��	 0�2 � N

Since the mass of % � is uniformly bounded by � � �� , we can take a weak* limit % of this
sequence of measures, so that for any

� � # � � ,
T VMX� ��� � � : . <�= " ` ��� � A
% � � � c o � � � #

where � � � "@? % C . Harnack’s inequality now implies that there is an absolute constant 3 ' such
that 3 ' � � c5� � � � c�� for any c � � . This proves the theorem, with the inequality #x � P � � � ��� � � ��� �
� ��� # � � � ^ : 3 ' � � �� : 303 ' � � � N
The constants 3 , � and 3 ' only depend on the discretization we have chosen. Picking a dis-
cretization with smaller “squares”, we may make all three constants as close to ) as we wish. 


Now we can prove Corollary 1.5.

Proof of Corollary 1.5. Given a non-Blaschke sequence
�

, arguing as in [NPT] one can show
that there exists a function

� � ��	 � � � in the unit disk with � �7� Z\�K� D �;S
for any Z � � if and

only if
�

is the union of a Blaschke sequence and a sequence
�

for which there exists a positive
harmonic function � in the unit disk with � ��� �24 Y �!��4 � � for all

� � �
. Then the result follows

from Theorem 1.4. 

We finish this section with the proof of Theorem 1.6.
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Proof of Theorem 1.6.
�
a ��� �

d � . Part (i) holds whenever � admits a harmonic majorant, be it
quasi-bounded or not (see Proposition 1.7), while (ii) follows from the dominated convergence
theorem.�

d ��� �
c � . We proceed by contradiction. Suppose that there exist � 4 �

and a sequence of
measures

A o � � o such that

(6.4) . 
 ���Co9� � A A o � �KN
Let �A o � � 
 ���Co � A o . Then

. <>= � � �A o � � %Q� A�� � %e� � �A oO� � � � A o �yP � � � ^;� N
Since

A oJ� � , their Carleson norms are uniformly bounded by some 3 3 4 �
. We apply the

direct part of [Gar81, Lemma I.5.5, p. 32] to � ; the lemma is stated for harmonic functions, but
harmonicity plays no role in the proof of the direct part. We obtain

�A oM� � � � A o �yP � � � ^;� : 6 ' 3 3 � �&P � � � �s^;� : 6 ' 3 3 3 ��� � #
by (d) (i). Since the sequence

� � � �A o �W� o tends to
�

in
� ' � � ��� , some subsequence must tend to

�
almost everywhere, and applying (d) (ii) to that subsequence, we find a contradiction with (6.4).�

c ��� �
b � . We define a function � on ' 6 by

� � � � � � oU� � � � R5o � ( 	 o
for

� � ? � # � ( ) C #
where

�LR�o � is an increasing sequence of positive numbers tending to infinity, to be determined
later, and

� 	 o � is given recursively by
	 3 � �

and � oU� � ( ) � � � o 6 ' � � ( ) � . Observe that each
� o is defined on the whole real line (they give supporting hyperplanes for the polygonal convex
graph of � ). We shall also use � 6 �_"@� � � � # � � for � � ' .

We prove that � 	 � admits a harmonic majorant using Theorem 1.4. Let � ok� � � 
 ���Co � and�@o � � TWVMX � ��
 � � = � o A A � . If
A � � , then

. = � 	 � � c��MA A � c5� � 8o � 3 . 
Lo � ���Co 6 ' � � o 	 � oM� c�� A A � c��� 8o � 3 . = ? � 6o 	 � oa� c�� Y � 6o 	 � o 6 ' � c�� C A A � c��
� . = � 3 	 � � c��MA A � c5� ( 8o � ' . = ? � 6o 	 � oM� c�� Y � 6o � ' 	 � oa� c�� C A A � c��:GR 3 . = � � c5�MA A � c�� ( 8o � ' . = �LR5o Y R5o � ' � � � oa� c�� Y � � 6 A A � c5�:GR 3 � 3 ( 8o$� ' �LR5o Y R5o � ' � �-o N

Since
�! !" o �-o � �

, we can choose an increasing sequence
�9Reo � such that

�# !"EolR5o�� F , buti o$� ' �LR5o Y R5o � ' � �@o DGF , and we are done.�
b ��� �

a � . First notice that � can be replaced by a function �� : � with the same properties
as � and the additional explicit description:

�� � � � � �� oa� � � � R5o � ( 	 o � R �o � for
� � ? �Co # �eo 6 ' C #
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where
R5o � R �o 4 �

for � � ) , � 3 � �
and

���Co � o � ' is an increasing sequence of positive numbers
tending to infinity fast enough so that io$� ' ) ��R �o DfF .

Define � o � � � � 
 � � � ��� � � � � � ; thus �� 	 � � i o �� o 	 � o .
The following Lemma is due to Alexander Borichev.

Lemma 6.6. There exists an absolute constant 354 �
such that whenever � � �

is bounded and� : � for some � � ��� � 6 � � � , then there exists �� � ��� � 6 � � � quasi-bounded such that � : ��
and . <�= �� � %e� A�� � %e� � �� � � � : 3 � � � � N

In order to prove (a) let � 3 be a harmonic majorant of � 	 � . Each � o is then bounded and
majorized by � 3 ��R �o , hence by applying the previous lemma we find �� o quasi-bounded such that� o : �� o and �� oM� � � : 3 � 3 � � � ��R �o . The series �� � � i �� o converges in

� ' �	� ��� , since �� o � �
for

all � and
�� � � � � 8 o �� oU� � � : 3 � 3 � � � 8 o ) ��R �o DvF #

and defines therefore a quasi-bounded harmonic majorant of � . 

Proof of Lemma 6.6. Set � � � "@� � � 
 � 
 	 # + � � � �W� . Let

A
denote the boundary measure of � ,

i.e. the measure such that � � "@?BADC
. We use the standard dyadic decomposition of the circle

given in (4.1).

Let � 3 � �
. For any � � ) , let � o be the union of the dyadic intervals

�
o � � n � � � ��� �Co � �
such that A ��� o � � � 4 � � ���
o � � �
N
Note that � o cannot contain two contiguous intervals such that

�
o � � � � o � � 6 ' � � o � ' � � � , because
then

� o � ' � � � n ��� �Co � � , a contradiction. Therefore, if
�
o � � n � o , thenA ���
o � � � : A ���
o � ' � � � � : � � ��� o � ' � � � � � + � � ��� o � � � D + A ��� o � � � N

For any interval
�
, let �� be the interval of same center and triple length, and let �� � � � �� ,

where the union is taken over all the dyadic intervals included in � � � � o � o . We writeA �A � � 3 0 � ���� A�� � %e�+( � <�= � � A A � A �A ' ( A �A 0 #
where 3 0 4 �

is to be chosen. This measure is absolutely continuous with respect to arc length.

The function we are looking for is �� � � "@? �A C . Indeed, let c � � and suppose that there exist a
dyadic interval

� n � , maximal among the dyadic intervals contained in � , such that

(6.5) . �
 " ` � %e� A�� � %e� � )3 0 N
Then clearly �� � c5� � � � � � c�� . We claim that if c is such that (6.5) does not hold for any
maximal dyadic interval

� n � , then �� � c5� � � � c5� , which will finish the proof.

Under that assumption, since the level sets of the Poisson integral in (6.5) are arcs of circles
connecting the extremities of �� , where they make a fixed angle with

� � depending on 3 0 , we
must have � c Y % �D� 6�� � ��� � for any % � �

and any maximal dyadic subinterval
�

of � , so that
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all the values
" ` � %e� for % � �

are comparable, say to the value at its center % 
 . Therefore for any
such

�
,

. 
 " ` � %e� A A � %Q� : 6 � " ` � % 
 � . 
 A A � %e� : + 6 � " ` � % 
 � . 
 � A�� � %e� : + 6 0� . 
 � " ` � %e� A�� � %Q�
� + 6 0�3 0 . 
 " ` � %e� A �A � %e�
N

Since
6��

is an increasing function of 3 0 , and therefore
6 � 4 ) a decreasing function of 3 0 , we

may choose a value of 3 0 4 ) large enough so that 3 0 � + 6 0� , and therefore, since � is the union
of its maximal dyadic subintervals,

. �� " ` � %e� A �A � %e� � . � " ` � %e� A �A � %e� � . � " ` � %e� A A � %e�
N
By construction,

� <>=9� � " ` � %e� A �A � %e� � � <>=9� � " ` � %e� A A � %e� , and we are done. 

7. WEAKER CONDITIONS FOR THE EXISTENCE OF HARMONIC MAJORANTS

In this section we state first a sufficient condition implied by a result of Borichev on a similar
problem. On the other hand, we also prove the necessary condition of Proposition 1.8 and show
that it is not sufficient.

Theorem 7.1 (BNT). Given a collection of nonnegative data
P � o � � ^1n ' 6 , there exists a finite

positive measure % on
� � such that

% ���
o � � �
� ��� o � � � � � o � �

if and only if

(7.1) 
 � ��TWVMX � 8� o � � � ��� � o � � � ���
o � � ��� P � o � � ^ � o � � � ��� is a disjoint family H DGF N
This is an analogue of the discretized version of Theorem 1.2(d), (as in Lemma 6.3) obtained

by considering only measures of type
A � � � i � o � � � ��� � ��� o � � � � ` ��� � , and by replacing the Poisson

kernel
" ` by the “square” kernels

� ` �9: <?> � � � � 
�� �L: < > � � � )� ��� ` � � 
�� �L: <?> � N
Here

� ` denote the intervals defined in (1.2) and ��� stands again for the characteristic function
of � .

The similarity of Theorem 1.2 with this result leads us to an:

Open Question. Is condition (d) in Theorem 1.2 still sufficient if we restrict it to
P76KS ^ such

that for any Z �J� ,
6
Sj� �

or
� ) Y �[Z7�[� ?

Theorem 7.1 together with the estimate � ` � " ` provide a sufficient (but not necessary) con-
dition for domination by true harmonic functions, which is clearly less restrictive than requiring
that � � � � ' �	� � � , but easier to check in concrete examples than the characterizing condition
of Theorem 1.4.
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Corollary 7.2. Any positive function � such that � o � � � � TWVMX � ��� � � satisfies (7.1) admits a
harmonic majorant. On the other hand, the positive harmonic function c �& " ` � ) � does not
satisfy (7.1) for certain choices of

�
.

Proof. It is well known and easy to see that there exists a constant
6

such that
" ` � 6 � 
 ��� � for

any c � � o � � (the constant
6

depends on the aperture � of the Stolz angle). Therefore, for anyc � � o � � "@? % C � c�� � 6 . <�= � 
 ��� � � %e� A
% � %e� � 6 % ��� o � � �
� ���
o � � � � 6 � o � � � 6 TWVOX� ��� � � #

which proves that
"@? � ) � 6 � % C is the harmonic majorant we are looking for.

To see that the condition is not necessary, consider any
� n PQ� � # ) �t�	� � � ^ . Then the

intervals
� o �d' are all disjoint; however

" ` ��� � � ) ��� + o � � ���
o �d' ��� ' , so that condition (7.1) will fail
(the sum is comparable to

� �
). 


In the same way as in Corollary 1.11, Corollary 7.2 and Proposition 1.8 imply the following
result. For � � � o � � , write

� � � � � � o � � (the radial projection of the square to an arc of the
circle).

Corollary 7.3. Assume that
�

is contained in a union
�

of Whitney squares � of center c � � �
and that TWVOX � 8� ����� � ) Y � c � � �@�d�GT VMXS������ � �!�54 �,� Se� Z �@� � ' H DfF #
where the supremum is taken over all

� � n �
such that

P �\� � � # � ��� � ^ is a disjoint family, then�
is interpolating for the Nevanlinna class.

We move next to the proof of the necessary condition in terms of the Hardy-Littlewood maxi-
mal function.

Proof of Proposition 1.8. (a) The problem can be localized, so we may work on the upper half
plane, � 6 � � P 
 ( ���*��� 4 � ^ , with

��� 6 <
	 � � ��
 Y � # 
 (��O� , restricting ourselves to positive
harmonic functions which are Poisson integrals of positive measures with finite mass. Here the
Poisson kernel is given by " � 6 <
	 �
� � � ), ���
 Y � � 0 (�� 0 N
For convenience we shall write here � �t� for the Lebesgue measure of a measurable set � n ' .
Also, we only need to look at boundary points in a fixed bounded interval, say Y ) : 
 : ) .

For any
� 4 �

, let � � � �]P�� � ? Y ) # ) C � � � �
� � 4 � ^ . For any
� � � � , there exists c � c �
� � and� � � �
� � � � ` such that

(7.2) � � c�� .�� � 
�� 4 � � � � # i.e. � � c��K� � ` ��4 � � � � N
By Vitali’s covering lemma, there exist an absolute constant

6 ' �f� � # ) � and a disjoint family of
intervals

� �(� � � �
� �=� , ) : � : �
, such that i � � � �5��� 6 ' � � � � .

Write c � � � c �
� � � � � 
 � ( �
� � . Note that since the point c � is contained in the “tent” over
� ` �

(therefore in the tent over
� � ) the points c � are separated in the hyperbolic metric.
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Now define new points c �� in the following way : let � �� � � � � ��� � + � ���5� � �5� � � � ` � � � � � andc �� � � 
 � ( �
� �� . Note that � � � � � ` �� ����� � ��� � + .
We claim that � � c �� �2� �

, where � is a harmonic majorant of � . Indeed, writing � � " ?,A+C
,� � c �� � � ), � �� . � )) ( � � � � �	 �� � 0 A

A � � � � ), � �� . � )) ( � � � � �	 � � 0 A
A � � � � ���

� �� � � c � � #
and, by (7.2), � � c � � � � � c �
�24 � � � ��� � � � ` � � � � � �� � ��� .

Therefore, since � � � � '� � ' � ,6 '+ � � � � : )+ 8 � � � �5� : 8
� � � � � � ` �� � : � P � � 4 � ^a� : 3��� N

(b) Similarly. 

We now give two examples showing that the necessary condition of Proposition 1.8 is strictly

stronger than that of Proposition 1.7 but still not sufficient.

Proposition 7.4. (a) There are functions � such that � � � � '� � � � � , but that do not admit a
harmonic majorant.

(b) There are functions � such that � � � � '� �	� � � , but � � �� � '� �	� ��� .
Proof. The proof rests on the following family of examples. Note that it is easy to turn those
examples into examples of sequences which are (or are not) interpolating for the Nevanlinna
class.

Again we will work on � 6 . Our functions � will vanish everywhere on the upper half plane,
except on the sequence Z � � � 
 � ( ��� � , where


 � � � � � and � � � � � � . To ensure that
� � :]� 
 � 6 ' Y 
 � � 0 we take 
 � + � � ( ) � . With this choice, it can be deduced from Proposition 8.2
(or the remark before Lemma 8.4), that a necessary and sufficient condition for the existence of
a harmonic majorant is that � � � � '

, that is,

(7.3)
8
�

� � Z � � � � DGF N
We note that

� �
 � � ��
 � � +
) ( " � � � ) # " � � � � "	 � � N

Henceforth we only study data
P � � ^ � � P � � Z � � ^ which are increasing sequences of positive

numbers tending to infinity. We also assume that
PQ� � � � � ( � � 6 ' � � 6 ' � �M� 
 � Y 
 � 6 ' � ^ � forms an

increasing sequence. Let
� 3 � � � � ��"g #x\P � � � D � � ^ . The necessary condition arising from the

fact that � � � � '� � ' � reads

(7.4)
8
� � ��� � � � � � �

� ' � �3 � � � : 3 � # � � 4 � N
This condition will be assumed for both examples.
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Now, for
� � � 3 � � � , define

� � � � P 
 � � � � �� ��
 ��4 � ^ � � 
 � Y � � � � � � # 
 � ( � � � � � � � , and let� ' � � ��� �_"1 !xUP � � � � � � � 6 ' 
� � ^ . Then,
�

� � � � � � �
� � ��� � # 
 � � � � � (�� � � � � � � � � � � �� � � � � # � � �' � � � ( � � �' � � � � � � � � �� �

and

(7.5) ���
P 
 � � � ��
 �24 � ^ ��� � � � �' � � � ( � � �' � � � � � � � � �� ( +

�
� � � � � � '8
� � � � � � �

� �� � � � � �' � � � ( +
�
� � � � �8
� � � � � � �

� �� � N
In order to prove (a), choose � � � � � � � � � ' . Since

� � � � � � � � � 3 � � � � � ' , condition (7.4) becomes
that

��� � � � remains bounded above, while the necessary and sufficient condition (see (7.3)) is8
�
� �� DvF N

With
� � � � �9�#�54 � �&� ' , this condition fails, so that � admits no harmonic majorant.

However,
� 3 � � � � � � �#�54 � � ' ! � � � ' � . Since


 � Y 
 � 6 ' � � � � � ' , then ) � � ' � � � � 6 ' � � � � � � � �M� � � ' � � �W� ,
thus

� ' � � � � � � � � � � � � � � ' ! � , and
� ' � � � � � � �#�54 � � ' ! � .

Therefore equation (7.5) becomes

���
P 
 � � � ��
 �24 � ^ ��� � )� �!�54 � ( +

�
� � � � �8
� � � � � � � )� �!�54 � � )� �#�54 � ( +

� �!�54 ' �!��4 � ' � � ��!��4 � 3 � � � *: )� �!�54 � ( 3 � : 3 �� #
and this choice of � does satisfy the necessary condition given in Proposition 1.8.

To prove the second statement in the Lemma, choose
� � � � ) . With similar but easier calcula-

tions one sees that
� 3 � � � � � ' ! � � � ' � and

� ' � � ��� � ' ! �
. Therefore (7.5) becomes

���
P 
 � � � � 
 � 4 � ^ ��� � ) � ( � � � � � � '8

� � ��� � � � )� � ) � ( +
� �#�54 ' � ' � � �� 3 � � � * �

�!�54 �
� #

so the weak
� '

condition fails for � � , even though � satisfies the necessary condition in Propo-
sition 1.7. 


8. PROOFS OF THE GEOMETRIC CONDITIONS

Proof of Corollary 1.11. Since
� S n � % � � �]��� � � � %e� � �#�54 �,� Se� Z\�K� � ' H # Z �J� #

to prove (a) and (b) it suffices to apply condition (a) of Corollary 1.10. Statement (c) follows
from the next Lemma applied to � � .

Lemma 8.1. Let � �5� Y &(' 6 satisfy i S9� = � )MY �[Z7�[� � � Z � DfF . Then � admits a quasi-bounded
harmonic majorant.
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Proof. Let � � i S � � Z ��� 
 � . By assumption � � � ' �	� �j� and obviously � � : � , hence the
result follows from Corollary 1.10(b) and Theorem 1.3. 


Parts (b) and (c) also follow directly from Theorem 1.2(d), by a simple argument based on the� ' , �=	 duality. 

Proof of Proposition 1.12. It is enough to consider the case where

�
is contained in only one

Stolz angle. Indeed, if
� � � o< � ' � < with

� � n � ;�� , � � ) #
N
N
N�# � , and % < 
� % � , then�! #"` % ;�� � ` ��� � � � � � �;� c��K� � ) # � 
� �>#
so that

�!��4 � � Se� Z �@� � ' behaves asymptotically like
�#�54 �,� � � ��
 S�� � Z\�K� � ' in

� ;�� (here Z � � < ). Also,
we can assume that the sequence is radial (this means that we replace the initial sequence by one
which is in a uniform pseudo-hyperbolic neighborhood of the initial one; by Harnack’s inequality
such a perturbation does not change substantially the behavior of positive harmonic functions).

According to Corollary 1.11 it is enough to prove the sufficiency of the conditions. Let us
first show that condition (1.3) implies interpolation in

� 6
. In order to construct a function


 � � ' � � �j� meeting the requirement of Theorem 1.3(c) assume that
� � P Z o ^ o n ? � # ) � is

arranged in increasing order and set ��;of� � ) Y �dZ o �[� �#�54 �,� S � � Z o �@� � ' . Clearly there exists a
decreasing sequence

���;o � o with ��@o : �@o
, � � �

, and
�! #" o �@ov� �

. Now, if
� ov� � S � , set� o � � o�� � o 6 ' , 
 o � �@o Y �@o 6 ' , and set


 � %e� � 8 o 
 o
� � � o � � � � � %e� # % ��� �EN

Then 
 � � ' � � ��� , and"@? 
 C � Z o � � . 
 � " � Z o #&%e� 8 � 
 �
� � � o � � � � � %e�MA�� � %e� � 8

� �Co 
 �
� � � o � )� ) Y �[Z o �[� . � � A�� � %Q�� i � �Co 
 �

)�Y �dZ o � �
�@o

) Y �[Z o � � ��@o
) Y �dZ o � � �#�54 �,� S � � Z o �@� � ' N

This and Theorem 1.3 prove the assertion.

The proof for the Nevanlinna class is even simpler. Set A A�� � � ' , the Dirac mass on ) � � � .
From (1.4) we get �!�54 � � S � � Z o �@� � ' � )) Y �dZ o � � " ?,A�� C � Z o � #
and we finish by applying Theorem 1.2. 

Proof of Proposition 1.13. By Corollary 1.11(c), we already know that (1.5) is a sufficient condi-
tion for

�
to be interpolating for

� 6
. Conversely, suppose that

�
is interpolating for

�
, that is,� � admits a harmonic majorant. Since

A �
has bounded balayage, then

� = � � A A � DGF , which is
exactly (1.5). 

Proof of Proposition 1.14. It is obvious that (a) implies (b). If we assume (c),

A �
will act against

any positive harmonic function. Suppose 	 � �
. As seen in Section 5, there exists a positive



INTERPOLATION IN THE NEVANLINNA AND SMIRNOV CLASSES AND HARMONIC MAJORANTS 25

harmonic function � so that
�#�54 6 � 	p� : � . Thus, taking

A S
as in (1.6),8S���� � ) Y �dZl�d� �!�54 6 ��	 � Z �@� � . = �#�54 6 � 	 � Z\�K� A A � � Z\� : . = � � Z �MA A � � Z � DGF N

Finally, to prove that (b) implies (c), suppose that (c) doesn’t hold, i.e. � � � � i S � ) Y �dZl�d� " S is
unbounded. Since � � is lower semi-continuous, this implies that � � �� � 	 � � ��� . Since

� 	 is the
dual of

� '
, there exists

� � � ' � � � � such that
� <>= � � � � F . Taking an outer function 	 � � 6

with
�!�54 � 	p� � " ? � C

we see that8S���� � ) Y �dZl�d� �!�54 � 	 � Z\�K� � 8S���� � ) Y �dZl�d� . <�= " S-�t� . <>= � � �g� F #
so (b) doesn’t hold. 

Proof of Naftalevič’s theorem. Assume that

�
is contained in a finite union of Stolz angles and

(1.4) holds. By Proposition 1.12,
�]� wyx�z �

, hence the trace
� � � is given by the majorization

condition of Theorem 1.2(b). Taking as majorizing function the Poisson integral of the sum of
the Dirac masses at the vertices, we see that

� � � � � Na.

Conversely, if
� � ��� � Na then the trace is ideal, so

�
is free interpolating and by Corollary

1.11(b) (1.4) holds. According to Theorem 1.2(b) and the definition of � Na, the function� � c�� � �� � � ) Y �[Z7�[��� ' if c � Z �J��
if c ��/�

admits a harmonic majorant � . Let � � c�� � "@?BADC � c�� and consider the intervals
� �` �uP % ��� � �5c � � � � %Q� ^CN

There exist constants � and 3 � such that
A ��� �` �24 3 � for any c such that � � c�� � � ) Y �dc �[� � ' .

If
�

is not contained in a finite union of Stolz angles, then there is an accumulation point% � � � of
� � n �

such that
� � 
n � � � %e� for any 
 . Pick 
 4 � ; then for Z � � � � , � �S�� 
� % and

we can construct an infinite subsequence
� � � n � � such that the Privalov shadows

P � �S � ^ S�� ��� � � are
disjoint. This prevents � from being the Poisson integral of a finite positive measure. 


We now give an example of a concrete separation condition implying that
A �

has bounded
balayage.

Proposition 8.2. Assume that
� nv� is contained in the union of a family

�
of Whitney squares

such that ��� � 4U� c � � � � Y � �W4 � c � � � �@� 4 � � '
� ) Y � c � � �@�d�
for any � # � ���

, ��
� �
, where c � � � is the center of � and � is a positive function, with � ��
 � � 


decreasing and

. 3 � ��
 �
 0 DfF N
Then

�G�Jwyx�z �
if and only if

�f�Jwyx�z � 6
, and if and only if8�+��� � ) Y �dc � � �K�[�vTWVMXS���� ��� �!�54 � � Se� Z �@� � ' DfF
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Note that this covers some cases where
A �

does not have bounded balayage, even though
another measure associated with the sequence will (see the proof).

In order to prove Proposition 8.2 consider the “Carleson window” � �L: < > # 8 � centered at
: <?>

, of
side

8
:

� �L: <?> # 8 � � �uP c � �I� ) Y �dc\� :G8 #���� � 4U� c5� Y B � :f8 ^CN
The next result is a Carleson-type condition which implies boundedness of the balayage.

Lemma 8.3. Suppose that
A � � �L: <?> # 8 �W� : � �98 � , where � is a nondecreasing function on

? � # + �
with . 3 � ��
 �
 0 A


 DGF N
Then

A
is a measure with bounded balayage.

A discrete version of this condition is8 o + o TWVMX> � � A � � �9: <?> # + � o � � DvF #
as can be checked by writing a Riemann sum.

Proof. For any
� 4 �

, let � � � B5� � � P c � � � " ` �L: <?> �1� � ^ . This is a disk, tangent to the unit
circle at the point

: < >
, of radius ) �O� � ( ) � . Therefore � � � B5� n � �L: < > #&3 � � � for

� � ) , say, with354 �
an absolute constant.

Using the distribution function
A � � � � B��W� and the fact that the measure

A
is bounded, we get

the following estimate for the balayée of
A

:

. = " ` �L: < > � A A � c�� � . 	3 A � � � � B5� � A � : 3 ' ( . 	' A � � � � B��W� A � : 3 ' ( . 	' A � � �9: <?> #&3 � � �W� A �: 3 ' ( . 	' � � 3 � � � A � : 3 ' ( 3 . '3 � ��
 �
 0 A

 DfF N



We will now compare measures satisfying the condition in Lemma 8.3, measures with bounded

balayage and Carleson measures. Each set is included in the next, and the examples will show
that both inclusions are strict.

Example 1. Let � � P � o ^ be a sequence of nonnegative reals. Let
A��

be the measure
concentrated on the circles centered at the origin of radius ) Y + � o given in dual terms by

. = �7� c5� A A � � c�� � � 8o$� ' � o )+-, .10�23 � �W� ) Y + � o � : <?> � ACBeN
One can check that

A �
is a Carleson measure if and only if it has bounded balayage and this

happens if and only if i o � o DIF . Also
A �

satisfies the condition in Lemma 8.3 if and only ifi o i � �Co � � DfF .

Example 2. Let � be a nonnegative-valued function on the interval
? � # ) � . Let

A
� be the

measure concentrated on the ray from the origin to ) given by

. = � � c�� A A � � c���� � . '3 �7��
 � � ��
 � A 
 N
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One can check that
A
� is a Carleson measure if and only if there exists a constant � such that

. '' � 
 � ��
 � A 
 : ��� # � � 4 �
and

A
� is a measure with bounded balayage if and only if it satisfies the condition in Lemma 8.3,

which happens if and only if . ' � ��
 �) Y 
 A 
 DfF N
In particular, if we take � � � � � � , with ) D � : +

,
A
� is a measure with bounded balayage

but it does not satisfy the condition in Lemma 8.3; if we take � ��
 � � ) , A
� is a Carleson

measure, but it does not have bounded balayage.

In view of Proposition 1.13, among other things, it is interesting to understand for which
separated sequences

�
the corresponding measure

A �
has bounded balayage. It is easy to see

that this is the case when �[Z � �[Z7� Y Z � � �[Z	�9�!� � � ) Y �dZl�d� ' ! 0 , Z	� 
� Z , but more is true.

Lemma 8.4. Suppose that � is a positive valued function such that � ��
 � � 
 is increasing and

. 3 � ��
 �
 0 A

 DGF N

Let � � ' stand for the inverse function of � . Then, if we have a sequence
� nv� such that

�����
Z�dZl� Y Z ��[Z � � ����� � � � ' � ) Y �[Z7�[� # � Z � 
� Z #

the measure
A �

has bounded balayage.

Examples of such functions � are given by

s�9�#�54 '� �&� ' ��� , with

� 4 �
. In that case, � � ' � � � �� �9�#�54 ' � � ' 6 � .

On the other hand, we can see that for the above lemma to hold, we must have � � ' � � �)4 4 �
.

More precisely, take the sequence in the upper half-plane given byZ � � � : � � ( � � � ' ! 0 : � � N
Then, Re Z � Y Re Z � 6 ' � : � � , so the sequence

P Z � ^ � verifies the separation condition in Lemma
8.4 with � � ' ��
 � � 
s�9�#�54 '� � ' ! 0 , but8

�
�
Im Z � � " S � � � � � 8

� ' Re Z �
Im Z � * 0 � 8

� )� � F N
Proof of Lemma 8.4. Let B � ? � # +-, � . By hypothesis, there is at most one Z �J� such that

B � � S � � �
� �W4 � Z � Y )+ � � ' � ) Y �[Z7�[� # � � 4 � Z � ( )+ � � ' � ) Y �[Z7�[� � N

Let
A �U� � i S�� �� S � ) Y �dZ �L�[� � S�� . Then

. = " ` �L: < > � A A � � c�� ��� ) Y �[Z7�[� " Se�L: <?> � ( . = " ` �9: <?> � A A � � c�� : 3 ( . = " ` �L: <?> � A A � � c��
N
By the proof of Lemma 8.3 for this specific value of B , we see that it will be enough to check that
for some absolute constants 3 ' #�3 0 , one hasA � � � �L: <?> # 8 � � : 3 ' � � 3 0 8 � # for

� D 8 D + N
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Consider
� $ � �IP Z � 
� Zt�eZ � � � �L: <?> # 8 � ^ . For any Z � � � $ we have

� � � S�� � � � � ' � ) Y �dZ � �[� : + � B Y � �W4 � Z � �@� : + 8 #
so the intervals

� S �
are all contained in

? B Y �
8 # B ( �

8 C
. Since they are disjoint, iS�� ����� � � � S�� � :���8 .

Using that � ��
 � � 
 is increasing we have

TWVMXS � ����� ) Y �[Z � �
� � � S�� � : � � T VMXS�� ��� � � � � S � � �

T VMXS�� ��� � � � � S � � : � � + 8 �+ 8 N
Finally, A � � � �L: <?> # 8 � � � 8S � ����� ) Y �dZ � � : TWVMXS � ����� ) Y �[Z	� �

� � � S�� � 8S � ����� � � � S�� � : � � + 8 �+ 8 ��8 �
� � � + 8 �
N



Proof of Proposition 8.2. For each Whitney square � in

�
, let Z � � � be the point in

� � � such
that �#�54 �,� S�� � � � Z � � � �@� � ' �G" � � P@�#�54 �,� Se� Z\�K� � ' �eZ �J� � � ^CN
Let

�
be the sequence formed by

P Z � � ��� � � � ^ . By Lemma 8.4 the corresponding measureA �
has bounded balayage. Therefore, there exists a positive harmonic function � with � � Z � � �W�2��!��4 � � S�� � � � Z � � �W�K� � ' if and only if8 � ) Y �[Z � � �@�d� �!�54 � � S�� � � � Z � � �W�K� � ' DGF N

According to condition (c) in Theorem 1.2 one deduces that
�f��wyx�z �

if and only if the last sum
converges. Furthermore, when this is the case, the function � can always be taken quasi-bounded
(see Lemma 8.1), so that interpolation can actually be performed in the Smirnov class. 


9. HARDY-ORLICZ CLASSES

Let 	J� ' Y & ? � # Ff� be a convex, nondecreasing function satisfying

(i)
�! !" � % 	 	 � � � � � � F

(ii) 
 0 -condition: 	 � � ( + � : ��	 � � �D( � ,
� � � 3 for some constants � # � � �

and
� 3 � ' .

Such a function is called strongly convex (see [RosRov]), and one can associate with it the
corresponding Hardy-Orlicz class

��
 �]P;�J� � 6 � . <>= 	 � �!�54 � �7� %e�K�[�MA�� � %e�lDGF_^�#
where

�7� %e� is the non-tangential boundary value of
�

at % ��� � , which exists almost everywhere.
In [Har99], the following result was proved.

Theorem. Let 	 be a strongly convex function satisfying (i), (ii) and the � 0 -condition:+ 	 � � � : 	 � � ( �7� # � � � '
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where � 4 �
is a suitable constant and

� ' � ' . Then
� n � is free interpolating for

� 

if and

only if
�

is a Carleson sequence, and in this case��
 � � �]P-R � �LR�S � S � � R � � � 8S���� � ) Y �[Z7�[� � �9�#�54 � RCS �d� DfF_^CN
The conditions on 	 imply that there exist � # � � � � # Ff� such that � � n ��
 n ��� . In

particular, the � 0 -condition implies the inclusion � � n ��

for some � 4 �

. This � 0 -condition
has a strong topological impact on the spaces. In fact, it guarantees that metric bounded sets
are also bounded in the topology of the space (and so the usual functional analysis tools still
apply in this situation; see [Har99] for more on this and for further references). It was not clear
whether this was only a technical problem or if there existed a critical growth for 	 (below
exponential growth 	 � � � � : � � corresponding to � � spaces) giving a breakpoint in the behavior
of interpolating sequences for

� 

.

We can now affirm that this behavior in fact changes between exponential and polynomial
growth. Let 	 be a strongly convex function with associated Hardy-Orlicz space

� 

. Assume

moreover that 	 satisfies

	 �LR ( 	 � : 6�� 	 �LR � ( 	 � 	 � � #(9.1)

for some fixed constant
6 � ) and for all

R # 	 � � 3 . The standard example in this setting is
	 � � � � � � � for � 4 ) . We have the following result.

Theorem 9.1. Let 	J� ' Y & ? � # Ff� be a strongly convex function such that (9.1) holds. If there
exists a positive weight 
 � � ' �	� � � such that 	 	 
 � � ' � � � � and � � : " ? 
 C , then

� �/wyxCz ��

.

Proof. Note first that (9.1) implies that
� 


is an algebra contained in
� 6

, hence it is sufficient
to interpolate bounded sequences (see Remark 1.1). As in Section 3, we set� � c�� � . <>= %)( c% Y c 
 � %Q� A�� � %e�
N
The reasoning carried out in Section 3 leads to an interpolating function of the form

� � ��� X � � � ,
with

� � � 	 , and � � � + ( � � 0 outer in � � for all � D ) (note that the measure
A

defining �
here is absolutely continuous, in fact

A � 
�A�� ). Also, � � n ��
 for any � 4 �
by our conditions

on 	 . By construction,
� 	 �9�#�54 � ��� X � �[� � � 	 	 
 D F so that � � X � � � � ��
 . Since

��

is an

algebra, we deduce that
� � ��� X � � � � � 
 . 


Example 9.2. We give an example of an interpolating sequence for
� 


which is not Carleson,
thus justifying our claim that there is a breakpoint between Hardy-Orlicz spaces verifying the
� 0 -condition and those that do not.

Consider the functions 	 � and let
� 3 �uP Z o ^ o nv� be a Carleson sequence verifying

�
o	� � � ��
, � 
� �

, where
�=o

are the arcs defined in (1.2). Since i o � ) Y �[Z o �d�hD F , there exists a
strictly increasing sequence of positive numbers

���Oo � o such that i o � )kY �[Z o �d� �Co D F and�! #" o % 	 �Co � F . Setting


 � 8 o � ' ! �o � 
 � #
we obtain

� 	 � 	 
 � i o � ) Y �[Z o �d� �Co D F and 
 � � ' � � �j� since � 4 ) . Associate with� 3 a second Carleson sequence
� ' � P Z �o ^ o such that the pseudo-hyperbolic distance between
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corresponding points satisfies � 	 S � � � Z o �@� � : � � ��� �� . Since
�Co & F the elements of the sequence� � � 3 � � ' are arbitrarily close and

�
cannot be a Carleson sequence. By construction,�!��4 � � Se� Z �@� � ' : " ? 
 C � Z � (as before, we may possibly have to multiply � with some constant

6
to

have that condition also in the points Z �o , but this operation conserves the integrability condition),
and therefore

�G�Jwyx�z � 

.
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118 ROUTE DE NARBONNE, 31062 TOULOUSE CEDEX, FRANCE.

E-mail address: hartmann@math.u-bordeaux.fr, xavier@mat.ub.es, artur@mat.uab.es,
pthomas@cict.fr


