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S U M M A R Y
A new technique is proposed here for the retrieval of slip images from the backprojection of
high-frequency displacement records. When direct S waves are seen to be dominant in the
near-source data, Green functions can be approximated by the far-field terms, as described by
ray theory. Assuming that the slip rapidly reaches the final value (i.e. short slip duration), the
measured displacement can be ascribed to the slip contributions lying on the corresponding
isochrone on the fault plane. Here we use the far-field representation theorem to backproject
on the fault plane the displacement amplitudes measured along the seismogram. Through the
weighted stack of amplitude maps obtained from different stations we recover high slip zones
on the fault.

The resolution analysis of the backprojected images is realized with spike tests (that we refer
to as ‘image Green functions’), which revealed to be an useful tool for detecting and locating
artificial distortions of high slip patches, due to a poor data coverage. However, when the slip
is uniformly spread along the isochrones, energy is scattered everywhere on the fault, leading
to defocusing effects on the final images. A partial deconvolution technique is proposed by
reiterating the backprojection. An important implication of this study is that slip maps can
be obtained as functions of the rupture time on the fault, that is, the method can be used to
retrieve variable rupture velocity kinematic models. Since the latter parameter is not known
a priori, we suggest that a data set of coupled rupture velocity and slip maps is built up and
the optimal model is chosen according to a waveform fitness criterion. This procedure allows
the slip inversion to be separated from the rupture velocity inversion, significantly reducing the
number of parameters to be estimated. Additionally, the parametrization of the rupture velocity
is done on a less dense grid than the slip.

By way of example, the technique is applied to estimation of the kinematic rupture model of
the 2000 Tottori earthquake (M = 6.8), based on the inversion of near-source strong-motion
data.

Key words: fault model, fault slip, inverse problem, ray theory, rupture propagation, slip
inversion, tomography.

1 I N T RO D U C T I O N

Source properties are required to throw light on the mechanisms

of earthquake rupturing as well as on the estimation of the strong

ground motion. Full dynamic inversions (Peyrat & Olsen 2004) to-

day need a large amount of recorded data in the vicinity of the source,

more robust theoretical support and hard computation, which are

not always available. A purely kinematic approach is indeed pre-

ferred, because it has the major advantage of limiting the number

of retrievable parameters to the final slip distribution, the rupture

velocity and the slip duration (the rise time). In this description, the

macroscopic properties are presumed to be known (the total seismic

moment and the fault mechanism, the geometry and the dimensions)

or they are assumed [the shape of the source time function (STF)].

To estimate the amplitude of slip occurring along the fault from

the observed records, seismologists generally use the representa-

tion theorem. This allows for the computation of the ground motion

displacement u(x, t) in any point of the medium, as a function of the

dislocation δu on the fault �, without introducing specific fracture

models (see e.g. Aki & Richards 1980):

un(x, t) =
∫ ∞

−∞
dτ

∫
�

δui (ξ, t)ci jpq n j
∂Gnp(x, t − τ ; ξ, 0)

∂ξq
dξ, (1)

Here, c is the elastic coefficients tensor, n is the normal to � and

finally G is the Green function tensor, that is, the response of the

medium to an unidirectional unit impulse.

The separation of contributions coming from the source and the

structure is not an easy matter, when looking at the seismic records.

C© 2006 The Authors 745
Journal compilation C© 2006 RAS



746 G. Festa and A. Zollo

However, seismological observations of the rupture process asso-

ciated with crustal earthquakes, suggest a dominant effect of the

rupture process on the seismic radiation in the near source range,

that is, at distances comparable to the fault length and at low fre-

quencies ( f ≤ 1 Hz) (Heaton 1990; Anderson 1991; Koyama 1997).

Most of inversion techniques use either the discrete wavenumber

method (Bouchon 1979) or the ray theory (see e.g. Chapman 1985)

to numerically compute the Green functions. The latter method is

a high-frequency asymptotic expansion representing the dominant

contribution of the complete wavefield, in the far-field condition at

near-source distances (Farra et al. 1986; Beroza & Spudich 1988).

When dense seismic networks allow for the retrieval of the pre-

cise locations and focal mechanisms of the aftershocks, the Green

functions can be obtained empirically (EGF) from microearthquake

records, when they have the same geometric properties as the main

event (Hartzell 1978). However, in the inversion of high-frequency

signals, inaccurate description of the velocity structures may sig-

nificantly affect the estimates of the source parameters (Graves &

Wald 2001).

The knowledge of the Green functions allows to uncouple the

propagation from the source. From the pioneering work of Aki

(1968) significant contributions have improved the inversion tech-

niques aimed at estimating the slip history on the fault during the

rupture process. Classical methods adopt a linearized approach in

the time domain (Beroza & Spudich 1988) or in the frequency

domain (Cotton & Campillo 1995) and they may combine dif-

ferent data sets, such as strong motion and teleseismic records,

geodetic measurements and surface observations (Wald & Heaton

1994).

However, linearized techniques provide solutions which are

strongly dependent on the initial choice in the parameters space.

This has led to the development of fully non-linear approaches, in

which the distance between the data and the synthetics is mini-

mized according to a cost function, through a global search in the

parameters space. Most popular techniques are the simulated an-

nealing (Hartzell & Liu 1995; Ji et al. 2001), the neighbourhood

algorithm (Kennett et al. 2000) or the genetic algorithm (Zeng &

Anderson 1996; Zeng & Chen 2001; Emolo & Zollo 2005). The

choice of an optimal algorithm is still a debated question, but a

global search generally penalizes the convergence to the solution.

Nearby the minimum the search can be accelerated by using a local

exploration technique, such as the downhill simplex (Hartzell & Liu

1995; Vallée et al. 2003).

In this paper, we present a new technique that addresses the issue

of retrieving seismic slip images from isochrone backprojection of

high-frequency records. The concept of isochrone was introduced

by Bernard & Madariaga (1984) and Spudich & Frazier (1984) who

proposed an approximated formula for the representation integral

(1), that is valid at high frequencies and for short rupture rise times.

Starting from the inverse problem as stated by Beroza & Spudich

(1988), we decouple the inversion of the slip, which is retrieved by

simple backprojection, from the one of the rupture velocity, which

still constitutes the kernel of the inversion algorithm. In the first sec-

tion, the grounds for the methods are detailed for both continuous

and discrete representations. The quality of the slip images is anal-

ysed in terms of the approximations and resolution (Sections 3 and

4). Subsequently the inversion kernel is discussed in Section 5. All

the steps of the methodology, within the approximations have been

described through synthetic examples based on the source-station

distribution of the 2000 October 6 Tottori (M = 6.8), Japan, earth-

quake. Finally, an application to real data of the same earthquake is

presented in Section 6.

2 T H E 2 0 0 0 T O T T O R I E A RT H Q UA K E

The 2000 October 6, Western Tottori earthquake (M w = 6.8)

originated at 04:30:18.07 UTC, 35.27N, 133.35E, and propagated

through the digital networks K-net and Kik-net, with several records

in the vicinity of the fault (almost 20 stations are located at less than

50 km from the epicentre). The depth of the earthquake has been

estimated to range between 11 and 15 km (Japan Meteorological

Agency, Iwata & Sekiguchi 2002; Fukuyama et al. 2003; Semmane

et al. 2005). According to the aftershock relocation, the rupture

propagated bilaterally, along an almost vertical plane at about 145N

with a bending to 165N in the last 5, 10 km northwards (Fukuyama

et al. 2003). The moment tensor (CMT) indicates a pure strike-slip

solution.

For this study, we choose a simplified fault geometry with a

rectangular area of length 30 km, width 20 km, the hypocentre lo-

cated at 13.5 km of depth and angular parameters strike = 150N,

dip = 90 and rake = 0. Since there was no evidence of surface slip

observed in the main shock area, we set the depth of the top of the

fault at 1 km, as suggested by Peyrat & Olsen (2004). We also adopt

a simplified 1-D propagation model, such as that defined in Iwata &

Sekiguchi (2002). The specific parameters for all of the layers are

detailed in Table 1. Some other 1-D models that differ from this one

mainly in the shallower layering, do not have a significant influence

in the computation of the Green functions. Fukuyama et al. (2003)

have already observed no relevant variations for the aftershock relo-

cation, when testing different 1-D propagation models. This allows

for a robust computation of the traveltime between the stations and

the subfaults. Finally, the location of the stations, as used in the ap-

plication, is listed in the Table 2, while the source-station geometry

is sketched in Fig. 1.

3 I S O C H RO N E B A C K P RO J E C T I O N

In the high-frequency far-field approximation, the representation

theorem (1) can be reduced to a line integral, if the slip is assumed

Table 1. 1-D propagation model used in the simulations. For a given layer,

d is the depth of the top interface, cp and cs are P and S-wave velocities,

respectively, and ρ is the density.

d (km) cp (km s−1) cs (km s−1) ρ (g cm−3)

0 5.5 3.18 2.6

1.9 6.0 3.5 2.7

16 6.6 3.81 2.8

38 8.0 4.62 2.9

Table 2. Station names and coordinates in latitude/longitude reference

frame.

Name Longitude (E) Latitude (N)

OKYH08 133.5581 34.8671

OKY004 133.6044 34.9547

SMNH10 133.448 35.5547

SMNH12 132.9583 35.160

SMN001 133.2638 35.5341

SMN002 133.1708 35.4683

SMN003 133.2355 35.1463

SMN004 133.003 35.285

TTR006 133.73 35.5075

TTRH04 133.733 35.4636

SMNH02 133.1782 35.2203

HRS021 133.2197 34.9497
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Figure 1. Fault geometry for the 2002, Tottori earthquake, and station set,

as used for the backprojection. The star indicates the epicentre. The station

NEWSTA is fictitious and has been used only in the synthetic tests to illustrate

the method.

to reach its final value instantaneously (the STF is a delta function)

(Bernard & Madariaga 1984; Spudich & Frazier 1984).

For a horizontally layered medium, consider the quantity

U c
i (x, t) =

∫
L

K c
Rc

i j (x, ξ)

rc(x, ξ)
δu j (ξ) C(v, c, φ) dξ, (2)

where the superscript c individuates one seismic phase (P or S), Rc is

the radiation pattern, which depends on the orientation of the fault,

rc is the geometric spreading and K c is a constant value, defined as

K c = 1

4π
√

ρρ0c c5
o

Fe
c . (3)

In the expression above, ρ 0 and ρ, c0 and c are the density and

wave velocity values at the source and at the receiver, respectively,

and Fe
c is a complex value, that accounts for the free surface and

transmission/reflection coefficients.

Finally, the Doppler contribution C, due to the directivity, is:

C = v c

c − v cos(φ)
, (4)

where v is the rupture velocity and φ is the angle between the direc-

tion of the point ξ, as seen from the hypocentre, and the direction

of the observer x, as seen from ξ.

The final displacement can be retrieved by accounting for the

phase shifts:

uc
i (x, t) = Re

(
U c

i (x, t)
) − Im

(
H

[
U c

i (x, t)
])

, (5)

where H is the Hilbert transform operator.

The integral path is a curve L(t) on the fault, referred to as the

‘isochrone’. Each point of this curve satisfies the elliptical relation-

ship:

Tp(x, ξ) + Tr (ξ) = const, (6)

where Tp is the traveltime (propagation time along the P or S travel-

paths from the point source ξ to the receiver at x) and Tr is the

rupture time (the time needed by the rupture front to reach ξ from

the hypocentre). Moreover, the isochrones are closed concentric

curves, if supershear and rupture velocity inversions are forbidden

on the fault.

If the displacement u has been measured at a set of receivers on the

free surface, we can invert eq. (5) to retrieve the slip function on the

fault. As a first-order approximation, the slip direction (rake) can be

assumed to be constant and, as a consequence, the slip distribution

reduced to a scalar function. In this case, the three components of

a seismogram will furnish independent information about the slip

from the same point of view.

Finally, the Hilbert transform contribution (the imaginary part in

eq. 5) is assumed to be negligible. This is a reasonable hypothesis,

since the Hilbert contribution is a zero mean, non-causal contribu-

tion and it is expected to poorly affect the recorded displacement.

This contribution will be discussed in more detail later.

With the above approximation, the isochrone theorem can be

stated as follows:

uc
i (x, t) ≈

∫
L

Re(K c)
Rc

i j (x, ξ)

rc(x, ξ)
γ jδu(ξ) C(v, c, φ) dξ, (7)

where u is the effective recorded displacement and γ j is the jth
component of the unit vector that has the direction of the slip. If

the rupture velocity is known on the fault surface, the map of the

isochrones can be formed. From eq. (6), the rupture times can be

evaluated by using a finite difference approximation of the eikonal

equation (Podvin & Lecomte 1991) and the propagation times by

shooting rays from the subfaults to the receivers.

According to eq. (7), the observed amplitude on the displace-

ment record at a given time t represents the sum of the contributions

lying on the corresponding isochrone L(t), propagated to the re-

ceiver. If we had only one receiver, for a given recorded amplitude

at time t, we would be not able to distinguish which points of the

corresponding isochrone provided effective dislocation. Increase of

resolution is achieved when intersecting information coming from

several receivers, the associated maps of isochrones of which scan

the fault plane along different paths. Consider the stations SMN001

and NEWSTA in the Fig. 1 (NEWSTA is a fictitious station, used

only in this example). Also assume a homogeneous slip on the fault

as well as a homogeneous propagation model, with cs = 3.5 km s−1.

At the directive station SMN001 (Fig. 2, column a), the largest am-

plitudes are recorded, with the displacement expected without any

change of sign, since the receiver is always seen on the same side by

the advancing rupture front. On the fault, the isochrones are length-

ened in the hypocentre-to-receiver direction. At the lateral station

NEWSTA (Fig. 2, column b) the amplitudes are one order of mag-

nitude lower and the changes of sign in the trace occur because the

station, as seen from different points on the fault, crosses the S nodes

of the focal mechanism (at 45◦ from the P nodes, plotted in Fig. 1).

In correspondence, the isochrones on the fault have an almost cir-

cular shape. Trajectories on the fault plane significantly depend on

the position of the hypocentre (Fig. 3a) but not on the propagation

model. In Fig. 3(b) isochrones have been sketched for the station

SMN001 and the 1-D model of Table 1.

The basic concept of the backprojection is thus to interpret the

displacement records as slip on the fault, after a suitable correction

for the propagation effects.

Denote with Aj(ti) the observed amplitude at time ti on the

displacement record at the jth receiver. In correspondence, the

isochrone Li j can be drawn on the fault plane. Since no a priori
knowledge of the slip function is available, the slip is assumed to

be uniform along the isochrone (δuiso); in this case, the observed
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(a) (b)

Figure 2. Displacement records for the station SMN001 (East component)

and NEWSTA (North comp.) and corresponding isochrones maps on the

fault plane. Units on the traces need to be scaled as a function of the slip,

which is assumed unitary. For the directive station (panel a), the isochrones

are lengthened along the source–receiver direction and their amplitude is

significantly larger because of the directivity. For the lateral station (panel b),

the amplitudes are lower and the shape of the isochrones is pretty circular.

Isochrones have been enhanced on the fault in correspondence of the times

marked on the signals.

(a) (b)

Figure 3. Isochrones map for the station SMN001, when the hypocentre is

displaced to the south (panel a) and for the 1-D velocity model (panel b), as

described in Table 1.

amplitude would be:

A j (ti ) = δuiso

∫
Li j

Re(K c)
Rc

jh(x j , ξ)

rc(x j , ξ)
γh C(v, c, φ) dξ. (8)

The quantity

Li j =
∫
Li j

Re(K c)
Rc

jh(x j , ξ)

rc(x j , ξ)
γh C(v, c, φ) dξ, (9)

depends only on the geometric properties of the fault and the propa-

gation medium, which are assumed. This is the scaling factor of the

observed amplitude, that is used to retrieve the slip function Pj(ξ ),

as seen from the jth receiver:

Pj (ξ) = A j (ti )

Li j
ξ ∈ Li j . (10)

There is no ambiguity in the definition of Pj, since each point of the

fault is crossed by a unique isochrone in the assumption of a zero

rise time.

Again, we note that the contribution coming from different com-

ponents of the same station to the slip function should be the same,

with the differences in the records being taken into account only

through the radiation pattern.

Adding the contributions from all of the stations, the slip map, as

retrieved by the backprojection, is:

B(ξ) =
N∑

j=1

w j Pj (ξ), (11)

where N is the number of stations and wj are suitable weights. They

are indicative of the quality of the signal with respect to the noise

and they can be associated to some punctual measurement, as the

maximum amplitude, or to some global indicator, as the energy

content.

The fault discretization is introduced by subdividing its surface

into elementary subfaults, in which the slip is assumed to be uniform.

The cell size should be small enough to warrant a Fraunhofer ap-

proximation, that is, the subfaults should be viewed as point sources

by the receivers.

In the discrete case, for a given receiver, each subfault is expected

to be crossed by more than one isochrone because its size should be

larger than the sample spacing of the isochrones on the fault. The

slip function there, is the average of the contributions carried by the

points inside that subfault. The total ‘brightness’ can be achieved by

using the same formula (11), providing that the receiver brightness

is that of the subfaults and not of the single points.

During the backprojection, we should pay attention to the value

of the contribution Lij, which is the denominator in the eq. (10).

For small Lij, instabilities can occur when the level of the noise is

relevant with respect to the signal. From a Singular Value Decom-

position (SVD) point of view, it corresponds to the amplification

of the solutions with small eigenvalues. The contribution Lij may

be relatively small in the vicinity of the hypocentre (where the total

length of the isochrone is small) or when the station crosses the

nodes of the radiation pattern, as seen from different points along

the same isochrone. In the latter case, their contributions will inter-

fere destructively, reducing the apparent length of the isochrone Lij

itself (eq. 9). To warrant stability to the projection, we regularize

the solution nearby the hypocentre by a smoothness operator and

we skip the backprojection of the amplitudes, when the radiation-

pattern changes sign along the corresponding isochrone. Moreover,

positivity constraint is simply imposed by assuming zero slip, when

the latter tries to be negative.

The slip maps from the backprojection are derived assuming a

zero rise time (eq. 11). However, for a finite rise time τ (ξ ), an

equivalent formulation can be proposed: in this case, the repre-

sentation theorem (1) is reduced to a surface integral bound by

two isochrones that correspond to times t and t − τ , if τ is con-

stant on the fault (Zollo & Bernard 1989). If it is allowed to vary,

the isochrones will be stretched and they can no longer be closed

curves where additional smoothness constraints are not imposed.

However, assuming a smooth variation of the rise time on the fault

plane, its effect is a low-pass filter on the slip image with cut-off

wavelength of vτ , and a delay of τ in the maximum value of the

slip.

This backprojection technique is analogous to medical tomog-

raphy imaging (TAC), which is interpreted analytically as a radon
transform. The radon function computes projections of a bidimen-

sional function f (x, y) along specified directions. This projection

is a set of line integrals that are evaluated along parallel paths. The

complete radon transform is indeed the collection of these 1-D func-

tions, computed for all the directions.

In our method, the slip function δu has the role of the original

function f , and line integrals are represented by the isochrone inte-

grals (7). The direction is identified by the position of the receivers

C© 2006 The Authors, GJI, 166, 745–756

Journal compilation C© 2006 RAS



Isochrone backprojection 749

with respect to some reference point on the fault (conventionally the

hypocentre). Some trials of inverting the radon-transform directly

to retrieve the slip function have been applied to small earthquakes

(Bindi & Caponetto 2001) when the STF can be satisfactorily re-

trieved using empirical Green functions.

3.1 Hilbert contribution

When using the expression (7) instead of (5), the Hilbert trans-

form contribution is automatically neglected. The latter cannot be

backprojected on the fault. Because of its convolutional feature, it

combines information from everywhere on the fault to achieve the

displacement amplitude at a given time.

For an assigned function f (t), the Hilbert transform is:

H[ f (t)] = − 1

π

∫ ∞

−∞

f (τ )

t − τ
dτ, (12)

with the associated transfer function − 1
π t , which is different from

zero everywhere on the t axis. As a consequence, a function as-

suming a zero value for t ≤ t 0 would have the Hilbert transform

different from zero also for t ≤ t 0, losing the causality. Thus, this

term is expected to be a small contribution, that has little effect on

the displacement amplitudes.

On the other hand, this contribution is due to the critical and su-

percritical incidences of the seismic rays, that are emphasized at

the farthest stations, outside the shear-wave window, when the mo-

tion becomes elliptical. The relevance of the Hilbert contribution

should be numerically tested for the fault-station geometry, assum-

ing, for example, uniform slip and rupture velocity on the fault.

The same check can be provided on the data, looking at the particle

motion.

4 I M A G E P RO C E S S I N G

4.1 Defocusing

In medical imaging, high resolution is guaranteed by the azimuthally

uniform scanning of the target. For seismic slip images, instead, the

lack of resolution can be ascribed to the limited number of stations

and their mutual positions with respect to the hypocentre, along

with the inaccurate correction for path effects and the focal mecha-

nism. Since we assume that the slip is uniformly distributed along the

isochrones, for any receiver, high slip zones are effectively expected

to be retrieved by intersecting the contributions of the different sta-

tions. However, energy is still spread out elsewhere on the fault. We

illustrate the steps of the backprojection for the Tottori fault-station

distribution of Fig. 1. In this synthetic example, the slip is assumed to

be uniformly zero on the fault, apart from a square anomaly located

on the north-west side of the fault, in which the value is δu = 5 m.

The boundaries of the anomaly have been superimposed on the snap-

shots of Fig. 4. Rupture velocity is also uniform (v = 2.8 km s−1)

and the propagation model is the one of Table 1. The fault has

been discretized in 30 × 20 square elements and for any receiver,

the isochrones have been approximated inside any subfault with

piecewise linear curves (Discretization for the isochrones times is

10 times finer than the size of the subfault). For sake of simplicity,

we select only six stations (SMNH12, SMN004, SMN001, TTR006,

OKY004, HRS021), which scan the fault plane from independent

points of view. The Green functions have been computed using the

same approximation as in the backprojection (direct S wavefield

from ray theory), to single out the effects of the backprojection.

Figure 4. The step-by-step construction of the backprojected map for the

Tottori fault-station geometry, as described in Fig. 1. The slip function is

zero everywhere on the fault, apart from a square anomaly, the boundaries

of which are superimposed on the pictures. Each map (starting from the top

left panel) is achieved by the addition of the contribution of a single station.

Receivers are ordered as follows: SMNH12, SMN004, SMN001, TTR006,

OKY004 and HRS021. When a single contribution is backprojected on the

fault, the ray theory cannot distinguish which points along the same isochrone

provide effective dislocation. The larger the number of stations, the more

precise the location of the anomaly will be, although the final image is

defocused along the dip direction.

In Fig. 4, we show the step-by-step construction of the slip map,

through the addition of the contributions of each station, one at a

time. The first panel picture (top left) represents the contribution of

the station SMNH12. As expected, the backprojection cannot dis-

tinguish which zones have provided effective dislocation along the

isochrones.

The larger the number of the contributions that come from the

other receivers, the more accurate is the location and the shape of

the slip anomaly. However, at the end of the process, the final image

remains defocused, and its boundaries describe a smiling anomaly

that is distorted along the vertical direction. Lack of resolution along

the dip direction is characteristic of vertical strike-slip faults, when

using only body waves to retrieve slip images. In this case, all the

receivers are located on the same side with respect to the fault and

the vertical path of the isochrones does not significantly change for

different stations. In Fig. 5 the backprojection is shown for the same

source–receiver configuration, but the dip of the fault is now 20◦,

with the depth of the hypocentre fixed at 13.5 km. In this case, the

final image is distorted along an almost horizontal direction.

Finally, since the seismic moment is likely to be conserved on the

whole fault, the absolute value of the slip in the anomaly is lower

(in this trial it is reduced to 1/10 of the true value in the anomaly).

C© 2006 The Authors, GJI, 166, 745–756
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Figure 5. Back projection for the same source-station configuration as in

the Fig. 4, but for a fault dipping at 20◦. The defocusing is now along a quite

horizontal direction.

4.2 Image Green functions

In this section, a detailed analysis of the defocusing effect is pro-

vided. If the fault has been subdivided into h elementary subfaults,

{Q1, Q2, . . , Qh}, the associated space in which the slip is allowed to

vary is Rh+ (if the slip direction is defined by the rake, the slip value

in any subfault is required to be positive). Consider the canonical

basis of Rh, {e1, e2, . . , eh}: a slip map U = (U 1, U 2, . . , Uh) can be

decomposed onto it as:

U =
h∑

i=1

Ui ei

Here, Ui is the slip value in the ith subfault, and Ui ≥ 0 for any i,
because of the positivity constraint. A vector of the canonical ba-

sis ei represents the map having a unit slip in the Qi cell and zero

elsewhere. Synthetic seismograms can be computed and backpro-

jected from each of these elementary maps. The final map Fi can

be described using the same canonical basis, yielding:

Fi =
h∑

j=1

Fi j e j

The matrix F is the Green function of the method, which we refer to

as Image Green function. In Fig. 6 the two canonical maps (e1 and

e390) and the corresponding image Green functions (F1 and F390) are

represented for the same synthetic example, as used in the previous

section. We can see that the largest amount of slip is retrieved in

the cell where the anomaly was originally located, although slip

values different from zero occur also in those zones that are crossed

on average by the same set of isochrones. Hence, the properties of

the matrix F can be summarized in diagonal dominance, sparsity

and a few off-diagonal terms. We will demonstrate that the matrix

F is also the operator that controls the defocusing effects on the

backprojected slip images. In this case, it is sufficient to show the

linearity of the forward and inverse problems with respect to the slip

function.

If the initial slip map is U, from discretization of eqs (2)–(5), the

displacement value at the kth station and nth time is:

Dkn =
h∑

i=1

K c
i

Rc
ik

r c
ik

CikLkn|Qi Ui , (13)

with the index i referring to the ith subfault and Lkn|Qi to the length of

the isochrone L jn inside Qi. No summation is assumed on repeated

indexes. Eq. (13) can be summarized as follows:

Dkn = Mfor
kn · U, (14)

Figure 6. Two elementary sources and the corresponding image Green func-

tions. On the right-hand side there are the maps that are obtained by the back-

projection of the synthetics evaluated for the maps plotted on the left-hand

side.

where Mfor
kn is a vector with complex values. In accounting for the

phase shifts, the displacement is:

Dkn = [
Re

(
Mfor

kn

) + I m
(
HMfor

kn

)] · U, (15)

where H is the Hilbert discrete operator. Therefore, the forward

modeling can be described by a three-entries matrix Gfor, such that

D = GforU.

On the other hand, from eqs (10) and (11), the backprojected

displacement U∗ is obtained from the data matrix D as follows:

U ∗
i =

∑
j,n

w j
L jni∑
m L jmi

D jn

L jn

where L jni = L jn|Qi . We can summarize the scalar products as

follows:

U ∗
i = Gback

i : D. (16)

Therefore, the backprojection is also a linear function, the associated

operator of which is the three-entries matrix Gback.

Since both of the relations (15) and (16) are linear, the matrix

G = Gback : Gfor satisfies the relation:

U∗ = G U. (17)

If U is any vector ei , the ith column of G is the ith image Green

function. Therefore, G = F.

Assuming zero error on data, the retrieved solution from the back-

projection is the true slip on the fault, convolved with the image

Green function. Due to its diagonal dominance, the matrix G is ex-

pected to be invertible and the backprojection effect can be removed

by deconvolution. However, non-linear effects owing to the velocity

structure and the source-station geometry as well as noise on data

need to be accounted for, within the physical constraint Ui ≥ 0. A

regularization in the linearized inversion is too expensive in terms

of computational costs, to be unfeasible when also inverting for the

rupture velocity. Therefore, we proceed to reduce the defocusing

effect using an iterative procedure.

4.3 Restarting

In the example analysed at the beginning of this section, the defocus-

ing arises both from an intrinsic resolution, owing to the fault-station
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configuration, and from the initial hypothesis, according to which

the slip is spread uniformly along the isochrones. This convolutional

effect, that has been analysed in the previous section, could be re-

moved by using iterative techniques. In the iterative back projection

techniques (Invanson 1983; Olson 1987; Beroza & Spudich 1988),

the solution retrieved at the nth step can be obtained by back propa-

gation of the residual between data and synthetics evaluated on the

n − 1th model. Stability is additionally enforced by damping the

contribution of small eigenvalues, when the transpose matrix associ-

ated to the linear problem approximates the inverse matrix. Here we

investigate another class of more intuitive iterative backprojections.

When a first backprojected map is available from the data, it can be

used as a priori information for a new backprojection. In this case,

at the nth iteration, we re-run the backprojection on the original

set of data, by assuming that the slip is no longer spread uniformly

Figure 7. Slip maps after 1(a), 2(b), 3(c) and 15(d) iterations in the restarting. Below each map, the histograms represent the misfit between the synthetics and

the data, which is singled out station by station.

along the isochrones, but the weight in the distribution now depends

on the n − 1th slip solution. We refer this iterative procedure to as

‘restarting’, by similarity with restart algorithms in iterative solvers

of linear systems. The improvement in the successive maps needs to

be anchored to a comparison with the data. Through this paper, we

evaluate the distance between synthetics and data with the L1 norm,

because this limits the importance of the high-amplitude values with

respect to the whole signal. Finally, this procedure can be stopped

when no additional gain is provided by the successive backprojected

map during the iterative process, or, in any case, when an imposed

maximum number of iterations is reached.

In the following, the method is applied to the synthetic data set

described in the previous section. In Fig. 7, the backprojected maps

have been plotted after 1, 2, 3 and 15 iterations. In addition the

histograms below each map represent the comparisons between the
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Figure 8. Comparison between synthetics evaluated from the original slip

map with a focalized anomaly (solid line) and the final backprojected

map, obtained by restarting after 15 iterations (dashed line). For the sta-

tion SMN001-East component (left panel) there is a significant discrepancy

is due to directivity; for the station SMNH12-North component (right panel)

the fit is really good.

synthetics and the data singled out station by station (our data set

is itself a collection of synthetic data). As far as the procedure pro-

gresses, the absolute value and the original shape of the anomaly

are more and more retrieved, within a focalization of the final im-

age around the original patch. In the final map, the slip reaches the

80 per cent of its true value and the original shape is well reproduced,

although it is slightly distorted downwards. From the histograms, a

significant gain can be observed for the low-order terms (between

40 and 50 per cent for both the first and second corrections), while

the gain after 15 iterations is only of 10 per cent when compared

to the third map. In this case, the restarting can go on for many

iterations (about 30), since the data have been generated with the

same approximations as the synthetics.

In conclusion, focused (after 15 iterations) and defocused (after

only 3 iterations) maps could be confused by the inversion, when

comparing synthetics to data at the chosen set of stations. More-

over, when dealing with real data, the defocused map is preferred.

In fact, the restarting procedure is expected to be stopped after a

few iterations because other approximations, such as noise on data,

inaccuracies in the Green function, the fault geometry and the fo-

cal mechanism, introduce significant errors, when compared with

high-order terms in the restarting.

Finally in Fig. 8 we compare synthetics and data for stations

SMN001 and SMNH12. The fit is particularly good for the lateral

station SMNH12, as well as for the other stations (see histograms

in Fig. 7), with the exception of the station SMN001. In fact, the

latter is the only directive station, given the location of the anomaly

on the fault plane. For the chosen location of the anomaly, it is the

only directive station. As it can be argued from the inspection of

Fig. 4 step 3, the isochrones corresponding to SMN001 have a more

eccentric shape than in the case of lateral and antidirective stations.

Hence, when the slip anomaly is localized, directive stations show

to be more sensitive to the vertical blurring of the final slip image.

5 RU P T U R E V E L O C I T Y E S T I M AT I O N

Up to this stage, we have set up an algorithm, that allows for a slip

map to be obtained, if the rupture velocity distribution is assumed

on the fault surface. Usually the rupture velocity is not known and it

is expected to be a rough function, even in its kinematic description

(Beroza & Spudich 1988; Cotton & Campillo 1995). However, the

backprojection technique allows for a slip map to be associated to

any assumed rupture velocity function. When a collection of coupled

slip map -rupture velocity map is built up, the best will represent the

solution of the considered inverse problem, according to a fitness

criterion. The latter function can be defined directly on the slip map,

within an assumption of some roughness principle (for instance, we

could prefer maps having focalized high-slip zones). In this case,

the solution runs the risk of not being correlated with the data. If the

restarting procedure is adopted to reduce the defocusing, the mis-fit

function is naturally defined in the data space and the same criterion

of comparison (the L1 norm) can be adopted for the inversion. In this

case, the parameter space contains all of the possible values {V 1, . . ,

VN}, that the rupture velocity can assume at a set of control nodes

{x1, . . , xN} on the fault. The minimum is searched for using the

genetic algorithm, which represents a good compromise between

the computational costs and the global exploration (Goldberg 1989;

Charbonneau 1995).

The solution of the kinematic problem has been translated into

a problem of minimum searching, in which the rupture velocity

is the only parameter involved, while the slip function is automat-

ically provided by the backprojection of recorded ground-motion

amplitudes. This formulation simplifies the standard non-linear in-

versions that search for joint estimates of slip and rupture velocity.

Here the intrinsic separation of the parameters relies on the hypoth-

esis that the backprojected map is the optimal and unique solution

for a given rupture velocity map. In this case, when looking at the

whole parameter space, the one defined on both the rupture velocity

and the slip, we are confining the exploration along the valley of the

minima with respect to the slip. Non-linear effects on the slip, that

may arise from the fault geometry, the positivity constraint and the

restarting process, could result in jumps from one valley to another

one. However, smoothness on the slip, automatically provided by

the defocusing, warrants stability because of a continuous depen-

dence on the data. (for two given close rupture velocity maps V and

V + �V, the difference in the corresponding slip maps still remains

small).

In addition, the two-step inversion is built up on two separated

parametrization grids, which do not need to overlap. Since only the

rupture velocity is involved in the kernel of the non-linear inversion,

we set the dimension of the rupture velocity space N smaller then the

number of subfaults h in which the slip is defined. This choice relies

on the hypothesis that the correlation between the rupture velocity

and the slip is resolved at wavelengths larger than the resolution of

the slip, when looking at the amplitudes of the displacement records.

This is for two reasons. First the rupture velocity is chosen as a pa-

rameter because it easily guarantees the causality in the propagation

of the rupture front, but it is not directly involved in the inversion. In

the place of it, inversions algorithms require the rupture times, which

are a smoother function, obtained from the velocity by integration.

Second, when using displacement records, the steep changes in the

speed of the rupture front are smoothed.

Finally, the velocity is interpolated onto the finer grid of the sub-

faults, using a the first-order Lagrange expansion.

5.1 Numerical inversion

In this section, a synthetic example is provided to analyse the inver-

sion of the rupture velocity. The synthetics have been computed for

the source–receiver geometry defined in Fig. 1, with the same set

of stations, as used in the previous section. The original slip map is

uniform (δu = 1 m), with two anomalies. A positive anomaly is lo-

cated in the northern part of the fault, and the slip inside is five times

larger than elsewhere. A zero patch is instead close to the hypocen-

tre. The boundaries of the anomalies have been superimposed on

the final slip map of Fig. 9(a). The rupture velocity is also uniform

(v = 2.3 km s−1), with an anomaly in the northern part, where the

value of the velocity is v = 2.8 km s−1. The shape of the anomaly is

sketched on the map of Fig. 9(b).
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Figure 9. In the left panel, the backprojected slip map from the inversion

is compared with the original model (the two boxes represent the location

of the anomalies). On the right, the retrieved rupture times (dashed line)

are compared with the original ones (the box here marks the location of the

rupture velocity anomaly). In spite of the different rupture times, the original

anomalies in the slip map are mostly retrieved, although the shape of the high

slip patch is lengthened in the dip direction.

The fault has been subdivided in 30 × 20 squared subfaults, in

which the slip is assumed to be uniform. We have used nine nodes

on the fault plane to anchor the velocity value (the points in Fig. 9b).

In this test, the true model does not belong to the solution space.

For the inversion, we used a genetic algorithm with a population of

30 genotypes and we let it to evolve for 300 iterations, constraining

the velocity values to range between 2 and 3 km s−1. The retrieved

model is plotted in Fig. 9.

When comparing the retrieved slip model with the original one,

the location of the high slip anomaly is again retrieved, with a lack

of resolution along the vertical direction. The value of the slip in the

anomaly is approximately the initial one (δu ranges between 4 and

4.8 m). The values of the velocity obtained on the northern side are

(from the top): v1 = 2.7 km s−1, v2 = 2.6 km s−1, v3 = 2.35 km s−1.

Elsewhere the mean value is about 2.25 km s−1. Although the veloc-

ities are on average very similar, the rupture times are quite different

(Fig. 9b). Finally, comparison between the data and the synthetics

is shown in Fig. 10. For the considered model, the fit is really good

and the differences exist only in some high-frequency details (most

of all for the directive station SMN001).

6 T H E A P P L I C AT I O N T O R E A L DATA

The 2000 Tottori earthquake has been recorded by the K-net and

Kik-net stations, that are provided with accelerometers with a low-

Figure 10. Comparison between the original data and the synthetics evalu-

ated from the final rupture velocity map and the consequent slip of Fig. 9.

pass response, a cut-off frequency of 30 Hz and absolute time. In the

selection of the stations, we discarded the closest ones (which have

a distance from the fault less than 10 km), to guarantee the far-field

condition. The final set of records consists of 12 stations, that are

located in the epicentral distance range of 20–50 km (Fig. 1).

As required by the backprojection, the displacement records are

directly obtained by double integration from accelerations, and the

low-frequency trend has been removed through a baseline correc-

tion, using a fourth-order polynomial interpolation on the noise be-

fore and after the signal (Boore 2001; Zhu 2003, Boore & Bommer

2005). This procedure allows for the retrieval of the displacements

with proper sign. Moreover, in the comparison between synthetics

and data, we add a band-pass filter. The lower frequency has been

chosen to be 0.1 Hz, in order to have at least two to three wave-

lengths between any subfault and any station (far-field condition).

The maximum frequency has been set at 0.5 Hz as the limit, at which

the S signal remains coherent. Beyond that frequency, the pollution

of additional reflected and diffracted phases from the 3-D propaga-

tion becomes significant. To infer the upper threshold, we look at

the stability of the motion on the S train in the data by polarigrams.

The selection of the S wave in the seismograms has been done by

limiting the record window by the theoretical first arrival S time,

which can be obtained from the 1-D propagation model of Table 1.

This time has been checked against the direct picking of the S wave,

when it was possible. In Fig. 11 we have compared polarigrams for

Figure 11. Comparison between the polarigrams from the data and the

synthetics for a southward station (HRS021), a lateral one (TTR006) and a

northward one (SMN001). The direct S-train is expected to have an almost

constant direction with time. For the lateral station TTR006 a change of

direction in the final part of the synthetic, which is not present in the record,

could indicate that the slip is at low level near the ends of the fault.
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the data and the synthetics, the latter obtained with a constant slip

and a constant rupture velocity of v = 2.4 km s−1. We show some

examples for the stations HRS021, TTR006 and SMN001, which

are located southwards, laterally and northwards with respect to the

fault plane.

For all of the synthetics, the orientation does not change as the

rupture moves away from the hypocentre, at least in the first part of

the record. Hence, we can argue that the S-wave train is expected

on average to follow an almost constant direction with time for any

station. The lateral station TTR006 shows good agreement with the

expected direction. The final change in the synthetics reflects the

changes of sign in the radiation pattern for the isochrones located

close to the ends of the fault. This feature, which is present for all

the lateral stations (TTRH04, SMNH12, SMN003, SMNH02), is

not seen in the data, indicating that the slip should be at a low level

there. At the station HRS021, the direction of the motion on the

horizontal component fits the theoretical one everywhere, except at

the beginning of the signal, where the amplitudes may correspond

to a foregoing phase.

After selecting the S window for all of the stations, the inversion

has been performed by backprojecting the displacement amplitudes.

For this purpose, the fault has been discretized into squares of size

1 km, providing 30 × 20 subfaults. The rupture velocity has been

discretized by using nine control points that are equally spaced along

the strike and the dip directions. The cost function is

f (V, d) =
∑

i

wi

∑
j

∣∣di j − dsyn
i j (V, Uback(V))

∣∣, (18)

where dij is the observation at the station i and at time j, and dsyn
i j

is the value of the synthetic at the same time and station. The latter

depends on the velocity values V at the control nodes and on the

backprojected map Uback. For this example, the weights wi are asso-

ciated to the maximum amplitude measured on each component of

the displacement records (We remark that, for any station, the two

horizontal components are considered as independent traces to be

backprojected).

In the Figs 12–14 the results of the inversion have been analysed.

The slip map (Fig. 12) has been compared directly with the solution

provided by Iwata & Sekiguchi (2002). We retrieve two different

patches of slip. The major one starts above the hypocentre, close

to the surface and goes down southwards until to reach the bottom

of the fault. The second one is located northwards at a depth be-

tween 10 and 18 km. The reliability of the images can be analysed

with the help of the image Green functions, associated to the final

solution. As far as we look at the defocusing of the discrete pixels

in the major patch, the backprojected images are mainly correlated

along the dip direction, downwards. Hence we can argue that the

slip close to the surface is real. At depths larger than the hypocentre

location, the lack of resolution does not allow to infer how deep is

the anomaly. Moreover the focusing of energy at the bottom is prob-

ably an artefact, because the isochrones of both patches intersect in

that region. If we raise up the bottom of the fault, such a focusing

effect is largely reduced. On the other hand, the width of the other

anomaly is larger and its location is harder to be defined. Such blur-

ring effects seem to be also present in the Iwata & Sekiguchi (2002)

slip map. Although we obtain high slip concentration close to the

surface, as in most of the kinematic inversions of Tottori earthquake,

we found non-symmetric slip distribution above the hypocentre, as

retrieved by Yagi (2001) and Semmane et al. (2005). The same

result was achieved by Iwata & Sekiguchi (2002). A southern pre-

dominance of the slip can be confirmed by the aftershock location

Figure 12. In the upper part, the slip map, as retrieved by the backprojection,

is compared to the map provided by Iwata & Sekiguchi (2002). We found

two major asperities: the first located in the shallower part of the fault,

southwards; the second one northward, with less defined boundaries. In the

lower part of the pictures we show the defocusing effect of some pixels

through the image Green functions. We see that, when the pixel is located in

the major patch, the blurring effect is mainly directed downwards. We can

argue, hence, that the large values of the slip close to the surface are real.

Figure 13. Rupture fronts and mean values of the rupture velocity as re-

trieved by the inversion.

(Fukuyama et al. 2003), which indicated that a large number of the

earliest aftershocks occurred in the SE part of the fault and than they

migrated northwards some time after the main shock. The seismic

moment, as retrieved by the inversion, is 2.67 1019 N m, which cor-

responds to a seismic magnitude of M w = 6.88. Compared to the

strong-motion solution of Semmane et al. (2005) (M w = 6.8), the
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Figure 14. Comparison between the data (solid lines) and the synthetics

(dashed lines), for the horizontal East and North components, respectively.

A reasonable agreement is seen for the lateral stations, while more inconsis-

tencies occur for the stations OKY004, OKYH08, SMNH10 and SMN002.

slightly high-value of the seismic moment can be justified by noting

that for this magnitude, the selected frequency band (0.1–1.0 Hz)

does not capture the flat part of the spectrum, being the minimum

frequency 0.1 Hz beyond the corner frequency for the S waves. The

mean value of the rupture velocity is 2.2 km s−1, with almost regular

fronts (Fig. 13). Finally, the comparison between the data and the

synthetics shows good agreement at the lateral stations (SMN003,

SMN004, SMNH02, SMNH12, TTRH04 and TTR006). Larger am-

plitudes in the synthetics for the directive stations OKY004 and

OKYH08 could be indicative of an artefact, that is, the extension

of the slip downwards at the bottom of the fault (as observed also

in the synthetic example of Section 4.3). Some inconsistencies are

also present for the northern stations SMNH10 and SMN002, but

not for SMN001, for which the displacement amplitudes are reason-

ably retrieved. As argued by Semmane et al. (2005), low-frequency

amplification could occur at those stations, due to site effects asso-

ciated with the marine sedimentary coverage.

7 D I S C U S S I O N A N D C O N C L U S I O N S

Recently, the demand of fast and reliable algorithms for the inversion

of the source parameters is increasing specially considering near-

real time or fast assessment of ground motion shaking and damages

soon after the occurrence of moderate to large earthquakes. In this

paper, we have proposed a fast technique for the retrieval of slip

images from the backprojection of near-source, high frequency dis-

placement amplitudes, as recorded by dense strong-motion arrays

around potentially causative faults. Starting from a null informa-

tion on the slip distribution, the slip has been distributed uniformly

along the corresponding isochrone. The combination of informa-

tion coming from different stations allows to enhance the high-slip

zones, although a part of the energy is not focalized and remains

in any case spread out elsewhere on the fault plane, following the

average direction of the isochrones. This is mainly due to the source-

stations geometry. Information about the resolution of the images is

achieved by looking at the image Green functions, which measure

the distortion of any original pixel as an effect of the geometry of the

fault and the receivers. For the particular case of strike-slip faults,

we observe a lack of resolution along the vertical direction, which

does not allow to precisely retrieve the depth of the anomalies.

We also demonstrate that the defocusing effect can be described

by a linear operator and, therefore, it could be removed from the fi-

nal map. Because of non-linear effects, that arise from the geometry,

the positivity and the smoothness of the slip function, the inversion

requires some additional constraints. As a consequence, the matrix

inversion becomes unfeasible in a inversion kernel, when one is also

interested into searching for the rupture velocity model. Instead of a

full deconvolution, a partial removal of defocusing can be achieved

if we re-run the backprojection assuming, as initial model, the slip

distribution obtained at the previous iteration (‘restarting’). This

iterative method, however, requires a comparison between the syn-

thetics and the data to define a stopping criterion. According to our

numerical trials, a few steps are sufficient to significantly improve

the data fit, whereas high-order terms provide weaker corrections

(fractions of percent). In this case, the restarting procedure increases

the computation by two to five times, which is still a low cost, as

compared to the matrix inversion in an LSQR approximation.

We remark that the stability of the back propagation is warranted

when the contribution of a whole isochrone at a given station is

significantly larger than the noise level. For this reason we prevent

the backprojection of that isochrones, along which the radiation

pattern changes its sign. Therefore, this method will work better for

earthquakes of magnitude between 4.5 and 6.0, and stations located

between 30 and 200 km. In this case, we deal with fault lengths of

2 to 10 km and receivers at several radii from the fault.

The rupture velocity controls the isochrones shapes on the fault

plane and it should be assumed a priori to compute a backpro-

jected slip map. As the rupture velocity is unknown, we proposed

the building up of a collection of rupture velocity maps, with a slip

map associated to each of them by backprojection. In this case, the

solution of the kinematic source problem can be chosen within the

rupture velocity map’ collection according to the same criterion that

is based on the misfit of the data. When applying this procedure, we

intrinsically separate the kinematic inversion into two parts: the rup-

ture velocity is retrieved from a fully non-linear inversion, while the

slip map is consequently provided from the backprojection. This

procedure allows to limit the dimension of the parameter space in

the non-linear inversions. Moreover, the same discretization for both

the rupture velocity and the slip is not necessary: on the contrary,

since the slip grid is related to the Fraunhofer approximation, it is

expected to be finer than the rupture velocity grid, which is related

to the computational costs and the efficiency of the global searching

algorithm. Finally, the stability of the inversion is reinforced by the

implicit smoothness of the slip maps. This assures that close rupture

velocity maps do provide similar slip maps.

The choice of a double parametrization relies on the hypothesis

that the correlation between rupture velocity and slip can be re-

solved at wavelengths larger than the spatial resolution of the slip,

when comparing the amplitudes of the displacement records. The
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synthetic example as well as the Tottori inversion, compared to the

solution of Iwata & Sekiguchi (2002), show that high slip zones can

be retrieved (in location and amplitude) even if the rupture times

are quite different. That opens a question about the way in which

the rupture velocity is used to retrieve the displacement amplitudes.

It is possible that different parametrizations of the rupture velocity

lead to the same homogenized model, as it is seen from the low-

frequency displacements records. A more coherent description of

the rupture velocity could come from the dynamic modelling as well

as from the near-fault high frequency observations.

When applying the backprojection to achieve the slip map of the

2000 Tottori earthquake, we obtain a very consistent model with that

proposed by Iwata & Sekiguchi (2002), the slip being predominantly

concentrated near the surface and going down southwards. A second

anomaly is located between 10 and 18 km in the northern part of

the fault. The value of the seismic moment is also consistent with

other studies on the same earthquake.

In conclusion since the problem is linear with respect to the

slip, the backprojection can be substituted by a linear inversion of

eqs (2)–(5) or even of eq. (1), when the complete wavefield is taken

into account. In this case, more accurate solutions will be provided

for the slip, but at substantially higher computational costs.
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