
HAL Id: hal-00167935
https://hal.science/hal-00167935

Preprint submitted on 23 Aug 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Stabilizing Leader Election
Carole Delporte-Gallet, Stéphane Devismes, Hugues Fauconnier

To cite this version:
Carole Delporte-Gallet, Stéphane Devismes, Hugues Fauconnier. Robust Stabilizing Leader Election.
2007. �hal-00167935�

https://hal.science/hal-00167935
https://hal.archives-ouvertes.fr

Robust Stabilizing Leader Election

Carole Delporte-Gallet1 Stéphane Devismes2 Hugues Fauconnier1

August 23, 2007

Abstract

In this paper, we mix two well-known approaches of the fault-tolerance:robustnessandstabilization. Robustness
is the aptitude of an algorithm to withstand permanent failures such as process crashes. The stabilization is a general
technique to design algorithms tolerating transient failures. Using these two approaches, we propose algorithms that
tolerate both transient and crash failures. We study two notions of stabilization: the self- and the pseudo- stabilization
(pseudo-stabilization is weaker than self-stabilization). We focus on the leader election problem. The goal here is to
show the implementability of the robust self- and/or pseudo- stabilizing leader election in various systems with weak
reliability and synchrony assumptions. We try to propose, when it is possible,communication-efficientimplementations.
In this work, we exhibit some assumptions required to obtainrobust stabilizing leader election algorithms. Our results
show, in particular, that the gap between robustness and stabilizing robustness is not really significant when we consider
fix-point problems such as leader election.

Keywords: Distributed systems, self-stabilization, pseudo-stabilization, robust algorithm, leader election.

1LIAFA, Université D. Diderot, 2 Place Jussieu, 75251, Paris Cedex 05, France,{cd,hf}@liafa.jussieu.fr
2LaRIA, CNRS FRE 2733, Université de Picardie Jules Verne, 33 rue Saint Leu, 80000 Amiens, France, stephane.devismes@u-picardie.fr

1 Introduction

The quality of a modern distributed system mainly depends onits tolerance to the various kinds of faults that it may
undergo. Two major kinds of faults are usually considered inthe literature: thetransientandcrashfailures. Thesta-
bilization introduced by Dijkstra in 1974 [12] is a general technique todesign algorithms tolerating transient failures.
In addition to the transient failures tolerance, the stabilization is highly desirable because, in many cases, stabilizing
algorithms naturally (or with some minor modifications) withstand the dynamic topological changes. Finally, the ini-
tialization phase is not required in a stabilizing algorithm. Hence, stabilization is very interesting in dynamic and/or
large-scale environments such as sensor networks and peer-to-peer systems. However, such stabilizing algorithms are
usually notrobust: they do not withstand crash failures. Conversely,robust algorithms are usually not designed to
go through transient failures (n.b., some robust algorithms,e.g., [3], tolerate the loss of messages which is a kind of
transient failures). Actually, there is a few number of papers that deals with both stabilization and crash failures,e.g.,
[14, 6, 20, 7, 9, 17, 16]. In [14], Gopal and Perry provide an algorithm that transforms fault-tolerant protocols into
fault-tolerant self-stabilizing versions assuming a synchronous network. In [6], authors prove thatfault-tolerant self-
stabilizationcannnot be achieve in asynchronous networks.

Here, we are interested in designing leader election algorithms that both tolerate transient and crash failures. Actu-
ally, we focus on finding stabilizing solutions in the message passing model with the possibility of some process crashes.
The impossibility result of Aguileraet al ([4]) for robust leader election in asynchronous systems constraints us to make
some assumptions on the link synchrony. So, we are looking for the weakest assumptions allowing to obtain stabilizing
leader election algorithm in a system where some processes may crash.

Leader election has been extensively studied in robust non-stabilizing systems (e.g. [2, 3]). In particular, it is also
considered as a failure detector: eventually all alive processes agree on a common leader which is not crashed. Such
a failure detector (calledΩ) is important because it has been shown in [11] that it is the weakest failure detector with
which one can solve the consensus.

The notion of stabilization appears in the literature with the well-known concept ofself-stabilization: a self-stabili-
zing algorithm, regardless of the initial configuration of the system, guarantees that the system reaches in a finite time a
configuration from which itcannotdeviate from its intended behavior. In [10], Burnset al introduced the more general
notion of pseudo-stabilization. A pseudo-stabilizing algorithm, regardless of the initial configuration of the system,
guarantees that the system reaches in a finite time a configuration from which it does notdeviate from its intended
behavior. These two notions guarantee the convergence to a correct behavior. However, the self-stabilization also
guarantees that since the system recovers alegitimateconfiguration (i.e., a configuration from which the specification
of the problem to solve is verified), it remains in alegitimateconfiguration forever (theclosureproperty). In contrast, a
pseudo-stabilizing algorithm just guarantees anultimate closure: the system can move from alegitimateconfiguration
to anillegitimateone but eventually it remains in alegitimateconfiguration forever. There is some stabilizing non-robust
leader election algorithms in the literature,e.g., [13, 8].

We study the problem of implementing robust self- and/or pseudo- stabilizing leader election in various systems
with weak reliability and synchrony assumptions. We try to propose, when it is possible,communication-efficient
implementations: an algorithm iscommunication-efficientif it eventually only usesn−1 unidirectionnal links (wheren
is the number of processes), which is optimal [18]. Communication-efficiency is quite challenging in the stabilizing area
because stabilizing implementations often require the useof heartbeats which are heavy in terms of communication. In
this paper, we first show that the notions of immediate synchrony and eventually synchrony are “equivalent” in (pseudo-
or self-) stabilization in a sense that every algorithm which is stabilizing in a systemS is also stabilizing in the system
S′ whereS′ is the same system asS except that all the synchronous links inS are eventually synchronous inS ′, and
reciprocally. Hence, we only consider synchrony properties that are immediate. In the systems we study: (1) all the
processes are synchronous and can communicate with each other but some of them may crash and, (2) some links may
have some synchrony or reliability properties. Our starting point is a full synchronous system notedS5. We show that a
self-stabilizing leader election can be communication-efficiently done in such a system. We then show that such strong
synchrony assumptions are required in the systems we consider to obtain a self-stabilizing communication-efficient
leader election. Nevertheless, we also show that a self-stabilizing leader election that is not communication-efficient
can be obtained in a weaker system: any systemS3 where there exists at least one path of synchronous links between
each pair of alive processes. In addition, we show that we cannot implement any self-stabilizing leader election without
these assumptions. Hence, we then consider the pseudo-stabilization. We show that communication-efficient pseudo-
stabilizing leader election can be done in some weak models:any system having atimely bi-source1 (S4) and any system
having atimely source2 andfair links (S2). Using a previous result of Aguileraet al([3]), we recall that communication-
efficiency cannot be done if we consider now systems having atleastone timely sourcebut where thefairnessof all the
links is not required (S1). However, we show that a non-communication-efficient pseudo-stabilizing solution can be

1Roughly speaking, a timely bi-source is a synchronous process having all its links that are synchronous.
2Roughly speaking, a timely source is a synchronous process having all its output links that are synchronous.

1

S5 S4 S3 S2 S1 S0

Communication-Efficient Self-Stabilization Yes No No No No No
Self-Stabilization Yes Yes Yes No No No
Communication-Efficient Pseudo-StabilizationYes Yes ? Yes No No
Pseudo-Stabilization Yes Yes Yes Yes Yes No

Table 1: Implementability of the robust stabilizing leaderelection.

implemented in such systems. Finally, we conclude with the basic system where all links can be asynchronous and lossy
(S0): it is clear that the leader election can be neither pseudo-nor self- stabilized in such a system. Table 1 summarizes
our results.

System Properties

S0 Links: arbitrary slow, lossy, and initially not necessary empty
Processes: can be initially crashed, timely forever otherwise
Variables: initially arbitrary assigned

S1 S0 with at least onetimely source
S2 S0 with at least onetimely sourceand every link isfair
S3 S0 with a timely routing overlay
S4 S0 with at least onetimely bi-source
S5 S0 except that all links aretimely

S0

S1

S2

S3

S4

S5

Figure 1: Systems considered in this paper (S → S′ meansS is weaker thanS′).

It is important to note that the solutions we propose are essentially adapted from previous existing robust algorithms
provided, in particular, in [2, 3]. Actually, the motivation of the paper is not to propose new algorithms. Our goal is
merely to show some required assumptions to obtain self- or pseudo- stabilizing leader election algorithms in systems
where some processes may crash. In particular, we focus on the borderline assumptions where we go from the possibility
to have self-stabilization to the possibility to have pseudo-stabilization only. Another interesting aspect of adaptating
previous existing robust algorithms is to show that, for fix-point problems such as leader election, the gap between
robustness and stabilizing robustness is not really significant: in such problems, adding the stabilizing property is quite
easy. Of course, adding a stabilizing property to robust algorithms allow to obtain algorithms that tolerate more typesof
failures: for example, the duplication and/or corruption of some messages.

Paper Outlines. In the following section, we present an informal model for our systems. We then consider the problem
of the robust stabilizing leader election in various kinds of systems (Sections 3 to 10). Finally, we summarize our results
and give some concluding remarks in Section 11.

2 Preliminaries

2.1 Distributed Systems

A distributedsystemis an aggregation of interconnected computing entities called processes. We consider here dis-
tributed systems where each process can communicate with each other throughdirected links: in the communication
network, there is a directed link from each process to all the others.We denote the communication network by the di-
graphG = (V , E) whereV = {1,...,n} is the set ofn processes (n > 1) andE the set of directed links. A collection of
distributedalgorithmsrun on the system. These algorithms can be seen as automata that enable processes to coordinate
their activities and to share some resources. We modelize theexecutionsof a distributedalgorithmA in the systemS by
the pair (C,7→) whereC is the set of configurations and7→ is a collection of binary transition relations onC such that for
each transitionγi−1 7→ γi we haveγi−1 6= γi. A configuration consists in the state of each process and thecollection
of messages in transit at a given time. The state of a process is defined by the values of its variables. Anexecutionof A
is amaximalsequencee = γ0,τ0,γ1,τ1,. . . ,γi−1,τi−1,γi,. . . such that∀i ≥ 1, γi−1 7→ γi and the transitionγi−1 7→ γi

occurs after time elapseτi−1 time units (τi−1 ∈ R andτi−1 > 0). For each configurationγ in any executione, we
denote by−→eγ the suffix ofe starting inγ,←−eγ denotes the associated prefix (i.e., e =←−eγ

−→eγ). Finally, we callspecification
a particular set of executions.

2.2 Self- and Pseudo- Stabilization

Formally, the self-stabilization can be defined as follows:

2

Definition 1 (Self-Stabilization [12]) An algorithmA is self-stabilizingfor a specificationF in the systemS if and
only if in any execution ofA in S, there exists a configurationγ such that any suffix starting fromγ is inF .

Pseudo-stabilization is weaker than self-stabilization in a sense that any self-stabilizing algorithm is also a pseudo-
stabilizing algorithm but the converse is not necessary true. Formally, the pseudo-stabilization can be defined as follows:

Definition 2 (Pseudo-Stabilization [10]) An algorithmA is pseudo-stabilizingfor a specificationF in the systemS if
and only if in any execution ofA in S, there exists a suffix that is inF .

Self- versus Pseudo- Stabilization (from [10]). An algorithmA is self-stabilizing for the specificationF in the sys-
temS if and only if starting from any arbitrary configuration,A guarantees thatS reaches in a finite time a configuration
from whichF cannot beviolated. In contrast,A is pseudo-stabilizing forF in S if and only if starting from any ar-
bitrary configuration,A guarantees thatS reaches in a finite time a configuration from whichF is notviolated. Thus,
the only distinction between these two definitions comes down to the difference between “cannot be” and ”is not”. This
difference may seem to be weak but actually is fondamental. In the case of self-stabilization, we have the guarantee that
the system eventually reaches a configuration from which no deviation fromF is possible. We have not such a guarantee
with the pseudo-stabilization, we just know that the systemeventually no more deviate fromF .

(a) (b)

r

j j

i

i

Figure 2: Self- and Pseudo-Stabilizing Algorithms.

Figure 2 illustrates the difference between these two properties. Consider the algorithm described by the state-
transition diagram shown in Figure 2.(a) (in this diagram, circles represent configurations and oriented edges represent
possible transitions). Starting from any configuration, the algorithm guarantees that the system reaches in at most one
transition either the configurationi or the configurationj. Fromi (resp. j), only the execution (i,i,...) (resp. (j,j,...))
can be done. Thus, if the intended specification of the systemis the set of executionsF = {(i,i,...), (j,j,...)}, then
the system reaches within one transition a configuration (i or j) from which no deviation fromF is possible. Hence,
the algorithm is self-stabilizing forF . Consider now the second algorithm provided in Figure 2.(b)and assume that
the intended specification is stillF . The algorithm is not self-stabilizing because starting from i, it does not guarantee
that the system will eventually leavei, now, in i the system can deviate fromF if the algorithm executes (i,j,j,...)
which is not inF . On the other hand, every execution of the algorithm in the system is one of the following: (i,i,...),
(i,...,i,j,j,...), or (j,j,...). Thus, every execution has an infinite suffix inF . In other words, along every execution the
algorithm guarantees that the system eventually reaches a configuration from which it does not deviate fromF , i.e., the
algorithm is pseudo-stabilizing forF .

Robust Stabilization. Stabilization is a well-known technique allowing to designalgorithms that toleratetransient
failures. Roughly speaking, a transient failure is a temporary failure of some components of the system that can perturb
its configuration. For instance, a transient failure can cause the corruption of some bits into some process memories
or messages, as well as, the loss or the duplication of some messages. Actually, stabilizing algorithms withstand the
transient failures because, after such failures, the system can be in an arbitrary configuration and, in this case, a sta-
bilizing algorithm3 guarantees that the system will recover a correct behavior in a finite time and without any external
intervention if no transient failure appears during this convergence. To show the stabilization, we observe the system
from the first configuration after the end of the last transient failure (yet considered asthe initial configurationof sys-
tem) and we assume that no more failure will occur. Actually,if we prove that from such a configuration and with such
assumptions, an algorithm guarantees that the system recovers a correct behavior in a finite time, this means that this
algorithm guarantees that the system will recover if the time between two periods of transient failures is sufficiently
large. Henceforth, such an algorithm can be considered as tolerating transient failures.

In this paper, we not only consider the transient failures: our systems may go through transient as well as crash
failures. Hence, our approach differs from the classical approach above presented. Here, we assume that some processes
may be crashed in the initial configuration. We also assume that the links are not necessary reliable during the execution.

3n.b., in stabilization, its is usually assumed that the transient failures do not affect the code of the algorithms.

3

In the following, we will show that despite these constraints, it is possible (under some assumptions) to design (self- or
pseudo-) stabilizing algorithms. Note that the fact that weonly consider initial crashes is not a restriction (but rather
an assumption to simplify the proofs) because we focus on theleader election which is a fix-point problem: in such
problems, the safety properties do not concern the whole execution but only a suffix.

2.3 Informal Model

Processes. Processes execute by taking steps. In a step a process executes two actions in sequence: (1) either it tries to
receive one message from another process, or sends a messageto another process, or does nothing, and then (2) changes
its state. A step need not to be instantaneous, but we assume that each action of a step takes effect at some instantaneous
moment during the step. The configuration of the system changes each time some steps take effect: if there is some steps
that take effect at timeti, then the system moves from a configurationγi−1 to another configurationγi (γi−1 7→ γi)
whereγi−1 was the configuration of the system during some time interval[ti−1, ti[andγi is the configuration obtained
by applying onγi−1 all actions of the steps that take effect at timeti.

A process can fail by permanently crashing, in which case it definitively stops to take steps. A process isalive at
time t if it is not crashed at timet. Here, we consider that all processes that are alive in the initial configuration are alive
forever. An alive process executes infinitely many steps. Weconsider that any subset of processes may be crashed in the
initial configuration.

We assume that the execution rate of any process cannot increase indefinitively. Hence, there exists a non-null lower
bound on the time required by the alive processes to execute astep4. Moreover, every alive process is assumed to be
timely, i.e., it satisfies a non-null upper bound on the time it requires toexecute each step. Finally, our algorithms are
structured as arepeat foreverloop and we assume that each process can only execute a bounded number of steps in each
loop iteration. Hence, each alive process satisfies a lower and an upper bound, respectively notedα andβ, on the time
it requires to execute an iteration of itsrepeat foreverloop. We assume thatα andβ are known by each process.

Links. Processes can send messages over a set of directed links. There is a directed link from each process to all the
others. A messagem carries atypeT in addition to itsdataD: m = (T ,D) ∈ {0,1}∗ × {0,1}∗. For each incoming
link (q,p) and each typeT , the processp has a message buffer,Bufferp[q,T], that can hold at most onesinglemessage
of typeT . Bufferp[q,T] =⊥ when it holds no message. Ifq sends a messagem to p and the link(q,p) does not lose
m, thenBufferp[q,T] is eventually set tom. When it happens, we say thatmessage m is delivered to p from q(n.b.,
we make no assumption on the delivrance order). IfBufferp[q,T] was set to some previous message, this message is
then overwritten. Whenp takes a step, it may choose a processq and a typeT to read the contents ofBufferp[q,T]. If
Bufferp[q,T] contains a messagem (i.e., Bufferp[q,T] 6=⊥), then we say thatp receives m from qandBufferp[q,T]
is automatically reset to⊥. Otherwisep does not receive any message in this step. In either case,p may change its state
to reflect the outcome. Note that even if a messagemof typeT is delivered top from q, there is no guarantee thatp will
eventually receivem. First, it is possible thatp never chooses to checkBufferp[q,T]. Second, it is also possible that
Bufferp[q,T] is overwritten by a subsequent message fromq of typeT beforep checksBufferp[q,T] (however, in this
casep receivessomemessage of typeT from q, but this is notm).

A link (p,q) is timelyif there exists a constantδ such that, for every execution and every timet, each messagemsent
to q by p at timet is delivered toq from p within time t + δ (any message that is initially in a timely link is delivered
within time δ). A link (p,q) is eventually timelyif there exists a constantδ for which every execution satisfies: there is
a timet such that every messagem thatp sends toq at timet′ ≥ t is delivered toq from p by timet′ + δ (any message
that is already in an eventually timely link at timet is delivered within timet + δ). We assume that every process knows
δ. We also assume thatδ > β. A link which is neither timely nor eventually timely can be arbitrary slow, or can lose
messages. Afair link (p,q) satisfies: for each type of messageT , if p sends infinitely many messages of typeT to q,
then infinitely many messages of typeT are delivered toq from p. A link (p,q) is reliable if every message sent byp to
q is eventually delivered toq from p.

Particular Caracteristics. A timely source(resp. aneventually timely source) [3] is an alive processp having all its
output linksthat aretimely(resp.eventually timely). A timely bi-source(resp. aneventually timely bi-source) [5] is an
alive processp having all its (input and output)links that aretimely (resp. eventually timely). We call timely routing
overlay(resp.eventually timely routing overlay) any strongly connected graphG′ = (V ′,E′) whereV ′ is the subset of
all alive processes andE′ a subset oftimely(resp.eventually timely) links.

Finally, note that the notions oftimelinessandeventually timelinessare “equivalent” in (pseudo- or self-) stabilization
in a sense that every stabilizing algorithm in a systemS having some timely links is also stabilizing in the systemS ′

whereS′ is the same system asS except that all the timely links inS are eventually timely inS ′, and reciprocally (see

4Except for the first step that we allow to not satisfy this lower bound.

4

Theorems 1 and 2). Indeed, the finite period where the eventually timely links are asynchronous can be seen as a period
of transient faults. Now, any stabilizing algorithm guarantees the convergence to a correct behavior after such a period.

Theorem 1 LetS be a system having some timely links. LetS′ be the same system asS except that all the timely links
in S are eventually timely inS′. An algorithmA is pseudo-stabilizing for the specificationF in the systemS if and only
if A is pseudo-stabilizing for the specificationF in the systemS′.

Proof.

- If. By definition, a timely link is also an eventually timely link. Hence, we trivially have: ifA is pseudo-stabilizing
for F in S′, thenA is also pseudo-stabilizing forF in S.

- Only If. Assume, by the contradiction, thatA is pseudo-stabilizing forF in S but not pseudo-stabilizing forF
in S′. Then, there exists an executione of A in S′ such that no suffix ofe is inF . Let γ be the configuration of
e from which all the eventually timely links ofS′ are timely. As no suffix ofe is inF , no suffix of−→eγ (the suffix
of e starting fromγ) is in F too. Now,−→eγ is a possible execution ofA in S because (1)γ is a possible initial
configuration ofS (S andS′ have the same set of configurations and any configuration ofS can be an initial
configuration) and (2) every eventually timely link ofS′ is timely in eγ . Hence, as no suffix of−→eγ is in F , A is
not pseudo-stabilizing forF in S — a contradiction.

2

Following a proof similar to the one of Theorem 1, we have:

Theorem 2 LetS be a system having some timely links. LetS′ be the same system asS except that all the timely links
in S are eventually timely inS′. An algorithmA is self-stabilizing for the specificationF in the systemS if and only if
A is self-stabilizing for the specificationF in the systemS′.

Communication-Efficiency. We said that an algorithm iscommunication-efficient[2] if there is a time from which it
uses onlyn− 1 unidirectional links.

Systems. We consider here six systems denoted bySi, i ∈ [0...5]. All these systems satisfy: (1) the value of the
variables of every alive process can be arbitrary in the initial configuration, (2) every link can initially contain a finite
but unbounded number of messages, and (3) except if we explicitly state, each link between two alive processes is
neither fair nor timely (we just assume that the messages cannot be corrupted).

The systemS0 corresponds to the basic system where no further assumptions are made: inS0, the links can be
arbitrary slow or lossy. InS1, we assume that there exists at least one timely source (whose identity is unknown). In
S2, we assume that there exists at least one timely source (whose identity is unknown) and every link is fair. InS3, we
assume that there exists a timely routing overlay. InS4, we assume that there exists at least one timely bi-source (whose
identity is unknown). InS5, all links are timely (this system corresponds to the classical synchronous system). Figure 1
(page 2) summarizes the properties of our systems.

2.4 Robust Stabilizing Leader Election

In the leader election, each processp has a variableLeaderp that holds the identity of a process. Intuitively, eventually
all alive processes should hold the identity of the same process forever and this process should be alive. More formally,
there exists an alive processl and a timet such that at any time∀t′ ≥ t, every alive processp satisfiesLeaderp = l.

A robust pseudo-stabilizing leader election algorithmguarantees that, starting from any configuration, the system
reaches in a finite time a configurationγ from which any alive processp satisfiesLeaderp = l forever wherel is an
alive process.

A robust self-stabilizing leader election algorithmguarantees that, starting from any configuration, the system
reaches in a finite time a configurationγ such that: (1) any alive processp satisfiesLeaderp = l in γ where l is
an alive process and (2) any alive processp satisfiesLeaderp = l in any configuration reachable fromγ.

3 Communication-Efficient Self-Stabilizing Leader Election in S5

We first seek a communication-efficient self-stabilizing leader election algorithm in a systemS5. To get the communi-
cation-efficiency, we proceed as follows: Each processp periodically sends ALIVE to all other processesonly if it thinks
to be the leader, i.e., only if Leaderp = p (Lines 16-18 of Algorithm 1).

5

Algorithm 1 Communication-Efficient Self-Stabilizing Leader Election onS5

CODE FOR EACH PROCESSp:
1: variables:
2: Leaderp ∈ {1,...,n}
3: SendTimerp , ReceiveTimerp : non-negative integers
4:
5: repeat forever
6: for all q ∈ V \ {p} do
7: if receive(ALIVE) fromq then
8: if (Leaderp 6= p) ∨ (q < p) then /∗ this ensures the convergence∗/
9: Leaderp ← q
10: end if
11: ReceiveTimerp ← 0
12: end if
13: end for
14: SendTimerp ← SendTimerp + 1
15: if SendTimerp ≥ ⌊δ/β⌋ then /∗ if p believes to be the leader, it periodically sends ALIVE to each other∗/
16: if Leaderp = p then
17: send(ALIVE) to every process exceptp
18: end if
19: SendTimerp ← 0
20: end if
21: ReceiveTimerp ← ReceiveTimerp + 1
22: if ReceiveTimerp > 8⌈δ/α⌉ then /∗ if ReceiveTimerp expires andp does not believe to be the leader,∗/
23: if Leaderp 6= p then /∗ p suspects its leader and, so, elects itself∗/
24: Leaderp ← p
25: end if
26: ReceiveTimerp ← 0
27: end if
28: end repeat

Any processp such thatLeaderp 6= p always chooses as leader the process from which it receives ALIVE the most
recently (Lines 6-13). When a processp such thatLeaderp = p receives ALIVE fromq, p setsLeaderp to q if q < p
(Lines 6-13). Using this mechanism, there eventually exists at most one alive processp such thatLeaderp = p.

Finally, every processp such thatLeaderp 6= p uses acounterthat is incremented at each loop iteration to detect if
there is no alive processq such thatLeaderq = q (Lines 21-27). When the counter becomes greater than a well-chosen
value,p can deduce that there is no alive processq such thatLeaderq = q. In this case,p simply elects itself by setting
Leaderp to p (Line 24) in order to guarantee the liveness of the election:in order to ensure that there eventually exists
at least one processq such thatLeaderq = q.

To apply the previously described method, Algorithm 1 uses only one message type: ALIVE and twocounters:
SendT imerp andReceiveT imerp. Any processp such thatLeaderp = p uses the counterSendT imerp to period-
ically send ALIVE to the other processes.ReceiveT imerp is used by each processp to detect when there is no alive
processq such thatLeaderq = q. These counters are incremented at each iteration of therepeat foreverloop in order to
evaluate a particular time elapse. Using the lower and upperbound on the time to execute an iteration of this loop (i.e.,
α andβ), each processp knows how many iterations it must execute before a given timeelapse passed. For instance, a
processp must count⌈δ/α⌉ loop iterations to wait at leastδ times.

Theorem 3 below claims that, using the timestamps⌊δ/β⌋ and8⌈δ/α⌉ respectively forSendT imerp andReceive-
T imerp, Algorithm 1 implements a communication-efficient self-stabilizing leader election in any systemS5. Due to
the lack of space, the proof of Theorem 3 has been moved to the appendix (Section A, page 13).

Theorem 3 Algorithm 1 implements a communication-efficient self-stabilizing leader election in SystemS5.

4 Impossibility of Communication-Efficient Self-Stabilizing Leader Election
in S4

To prove that we cannot implement any communication-efficient self-stabilizing leader election algorithm inS4, we
show that it is impossible to implement such an algorithm in astronger system:S−5 whereS−5 is any systemS0 having
(1) all its links that are reliable and (2) having all its links that are timely except at most one which can be neither timely
nor eventually timely.

Lemma 1 LetA be any self-stabilizing leader election algorithm inS−5 . In any execution ofA, any alive processp
satisfies: from any configuration whereLeaderp 6= p, ∃k ∈ N such thatp modifiesLeaderp if it receives no message
duringk times.

Proof. Assume, by the contradiction, that there exists an execution e where there is a configurationγ from which a
processp satisfiesLeaderp = q forever withq 6= p whilep does not receive a message anymore. AsA is self-stabilizing,
it can start from any configuration. So,−→eγ is a possible execution. Letγ′ be a configuration which is identical toγ except

6

Algorithm 2 Self-Stabilizing Leader Election onS3

CODE FOR EACH PROCESSp:
1: variables:
2: Leaderp ∈ {1,...,n}
3: SendTimerp , ReceiveTimerp : non-negative integers
4: Collectp, OtherAlivesp : sets of non-negative integers /∗ these sets are used to compute theAlivesp set∗/
5:
6: macros:
7: Alivesp = OtherAlivesp ∪ {p}
8:
9: repeat forever
10: for all q ∈ V \ {p} do
11: if receive(ALIVE,k,r) from q then
12: Collectp ← Collectp ∪ {r}
13: if k < n− 1 then
14: send(ALIVE,k + 1,r) to every process exceptp andq /∗ retransmission∗/
15: end if
16: end if
17: end for
18: SendTimerp ← SendTimerp + 1
19: if SendTimerp ≥ ⌊δ/β⌋ then /∗ periodicallyp sends a new ALIVE message to every other process∗/
20: send(ALIVE,1,p) to every process exceptp
21: SendTimerp ← 0
22: end if
23: ReceiveTimerp ← ReceiveTimerp + 1
24: if ReceiveTimerp > (4n− 3)⌈δ/α⌉ then /∗ periodically,p selects a leader inAlivesp ∗/
25: OtherAlivesp ← Collectp

26: Leaderp←min(Alivesp)
27: Collectp ← ∅
28: ReceiveAliveT imerp ← 0
29: end if
30: end repeat

thatq is crashed inγ′. Consider then any executioneγ′ starting fromγ′ wherep did not receive a message anymore. As
p cannot distinguish−→eγ andeγ′ , it behaves ineγ′ as in−→eγ : it keepsq as leader whileq is crashed — a contradiction.2

Theorem 4 There is no communication-efficient self-stabilizing leader election algorithm in any systemS−5 .

Proof. Assume, by the contradiction, that there exists a communication-efficient self-stabilizing leader election
algorithmA in a systemS−5 .

Consider any executione where no process crashes and all the links behave as timely. By Definition 1 (see page 2)
and Lemma 1, there exists a configurationγ in e such that in any suffix starting fromγ: (1) any alive processp satisfies
Leaderp = l forever wherel is an alive process, and (2) messages are received infinitelyoften through at least one input
link of each alive process except perhapsl.

Let−→eγ be the suffix ofe where every alive processp satisfiesLeaderp = l forever. Communication-efficiency and
(2) implies that messages are received infinitely often in−→eγ through exactlyn− 1 links of the form (q,p) with p 6= l. Let
E′ ⊂ E be the subset containing then− 1 links where messages transit infinitely often in−→eγ .

Consider now any executione′ identical toe except that there is a time after which a certain link (q,p) ∈ E′ arbitrary
delays the messages. (q,p) can behave as a timely link an arbitrary long time, so,e ande′ can have an arbitrary large
common prefix. In particular,e′ can begin with any prefix ofe of the form←−eγe′′ with e′′ a non-empty prefix of−→eγ . Now,
after any prefix←−eγe′′, (q,p) can start to arbitrary delay the messages and, in this case,p eventually changes its leader
by Lemma 1. Hence, for any prefix←−eγe′′, there is a possible suffix of execution inS−5 wherep changes its leader: for
some executions ofA in S−5 there is no guarantee that from a certain configuration the leader does not changes anymore.
Hence,A is not self-stabilizing inS−5 — a contradiction. 2

By definition, any systemS−5 havingn ≥ 3 processes is a particular case of systemS4. Hence, follows:

Corollary 1 There is no communication-efficient self-stabilizing leader election algorithm in a systemS4 havingn ≥ 3
processes.

5 Self-Stabilizing Leader Election inS3 and S4

S4 is a particular case of systemsS3. So, by Corollary 1, there does not exist any self-stabilizing communication-
efficient leader election algorithm working in any systemS3 or S4. We now present a non-communication-efficient
self-stabilizing leader election algorithm forS3: Algorithm 2. By definition, this algorithm is also self-stabilizing in S4.
However, using the characterics ofS4, it can be simplified for working inS4 as explained at the end of the section.

Algorithm 2 consists in locally computing in the setAlives the list of all alive processes. Once the list is known by
each alive process, designate a leader is easy: each alive process just outputs the smallest process of itsAlives set.

7

Any systemS3 is characterized by the existence of a timely routing overlay, i.e., for each pair of alive processes
(p,q) there exists at least two elementary paths of timely links: one from p to q and the other fromq to p. Using
this characteristic, our algorithm works as follows: (1) every processp periodically sends an (ALIVE,1,p) message
through all its links (Line 20 of Algorithm 2); (2) when receiving an (ALIVE,k,r) message from a processq, a process
p retransmits an (ALIVE,k + 1,r) message to all the other processes exceptq if k < n− 1 (Lines 13-15).

Using this method, we have the guarantee that, any alivep periodically receives an (ALIVE,−,q) message for each
other alive processq. Indeed, as there exists a timely routing overlay in the system, for each pair of alive processes
(p,q), there exists at least one elementary path of timely links fromq to p whose length is bounded byn− 1 (the upper
bound on the diameter of the timely routing overlay), and conversely. Hence, each processp can periodically compute
a Collectp set where it stores the IDs of every other alive process: the IDs contained in all the messages it recently
received. Eventually, the IDs of every crashed process doesnot appear in theCollect sets anymore. Moreover, the
timely routing overlay guarantees that the IDs of each otheralive process are periodically assigned into theCollect sets
of all alive processes. Hence, by periodically assigning the content ofCollectp (using a period sufficiently large) to the
setOtherAlivesp (Line 25), we can guarantee the convergence ofOtherAlivesp to the set of all the alive processes
different ofp. Finally,p just has to periodically choose its leader in the setAlivesp = OtherAlivesp ∪ {p} (Line 26)
so that the system eventually converges to a unique leader. Finally, note that Algorithm 2 still uses one message type:
ALIVE, and the two counters:SendT imerp andReceiveT imerp.

Theorem 5 below claims that, using the timestamps⌊δ/β⌋ and(4n − 3)⌈δ/α⌉ respectively forSendT imerp and
ReceiveT imerp, Algorithm 2 is self-stabilizing for the leader election problem in any systemS3. The proof of Theorem
5 is provided in the appendix (Section B, page 16).

Theorem 5 Algorithm 2 implements a self-stabilizing leader electionin SystemS3.

S4 is a particular case ofS3. Indeed, there exists a timely routing overlay in any systemS4 due to the existence of a
bi-source. But, inS4, the diameter of the timely routing overlay is bounded by 2 instead ofn − 1 in S3. Hence, the
ALIVE messages need to be repeated only once inS4 to get the guarantee that each alive process receives them ina
bounded amount of time. Hence, Algorithm 2 remains self-stabilizing in any systemS4 if we replace the timestamp of
ReceiveT imerp by 9⌈δ/β⌉ (i.e., (4d + 1)⌈δ/β⌉ with the diameterd = 2) and the test of Line 13 by the test “k < 2”.

6 Pseudo-Stabilizing Communication-Efficient Leader Election in S4

We now show that, contrary to self-stabilizing leader election, pseudo-stabilizing leader election can be communication-
efficiently done inS4. To that goal, we study an algorithm provided in [2]. In this algorithm, each processp executes in
roundsRoundp = 0, 1, 2, . . . , where the variableRoundp keepsp’s current round. For each round a unique process,
q = Roundp mod n+1, is distinguished:q is called theleader of the round. The goal here is to make all alive processes
converge to a round value having an alive process as leader.

When starting a new roundk, a processp (1) informs the leader of the round,lk, by sending it a (START,k) message
if p 6= lk (Line 6-8), (2) setsRoundp to k (Line 9), and (3) forcesSendT imerp to ⌈δ/α⌉ (Line 10) so that (a)p sends
(ALIVE,k) to all other processes ifp = lk (Lines 35-37) and (b)p updatesLeaderp (Line 38). While in the round
r, the leader of the roundlr (lr = r mod n + 1) periodically sends (ALIVE,r) to all other processes (Lines 33-40).
A processp modifiesRoundp only in two cases:(i) if p receives an ALIVE or START message with a round value
bigger than its own (Lines 19-20), or(ii) if p does not recently receive an ALIVE message from its round leaderq 6= p
(Lines 26-32). In case(i), p adopts the round value in the message. In case(ii), p starts the next round (Line 29).
Case(ii) allows a process to eventually choose as leader a process that correctly communicates. Case(i) allows the
round values to converge. Intuitively, the algorithm is pseudo-stabilizing because, the processes with the upper values
of rounds eventually designates as leader an alive process that correctly communicates forever (perhaps the bi-source)
thanks to(ii) and, then, the other processes eventually adopt this leaderthanks to(i). Finally, note that Algorithm 3
uses two message types: ALIVE and START and the two counters:SendT imerp andReceiveT imerp.

Theorem 6 below claims that, using the timestamps⌊δ/β⌋ and8⌈δ/α⌉ respectively forSendT imerp andReceive-
T imerp, Algorithm 3 is pseudo-stabilizing and communication-efficient for the leader election problem in any system
S5. The proof of Theorem 6 is given in the appendix (Section C, page 17).

Theorem 6 Algorithm 3 implements a communication-efficient pseudo-stabilizing leader election in SystemS4.

7 Impossibility of Self-Stabilizing Leader Election inS2

To prove that we cannot implement any self-stabilizing leader election algorithm inS2, we show that it is impossible to
implement such an algorithm in a particular case ofS2: let S−3 be any systemS2 having all its links that are reliable but

8

Algorithm 3 Communication-Efficient Pseudo-Stabilizing Leader Election onS4

CODE FOR EACH PROCESSp:
1: variables:
2: Leaderp ∈ {1,...,n}
3: SendTimerp , ReceiveTimerp , Roundp: non-negative integers
4:
5: procedureStartRound(s) /∗ this procedure is called each timep increases its round value∗/
6: if p 6= (s mod n + 1) then
7: send(START,s) to s mod n + 1
8: end if
9: Roundp ← s
10: SendTimerp ← ⌊δ/β⌋
11: end procedure
12:
13: repeat forever
14: for all q ∈ V \ {p} do
15: if receive (ALIVE,k) or (START,k) from q then
16: if Roundp > k then
17: send(START,Roundp) to q
18: else
19: if Roundp < k then /∗ to ensure the convergence∗/
20: StartRound(k)
21: end if
22: ReceiveTimerp ← 0 /∗ if k ≥ Roundp, p restartsReceiveTimerp ∗/
23: end if
24: end if
25: end for
26: ReceiveTimerp ← ReceiveTimerp + 1
27: if ReceiveTimerp > 8⌈δ/α⌉ then /∗ on time outp changes its round value ifp is not the leader of current round∗/
28: if p 6= (Roundp mod n + 1) then
29: StartRound(Roundp + 1)
30: end if
31: ReceiveTimerp ← 0
32: end if
33: SendTimerp ← SendTimerp + 1
34: if SendTimerp ≥ ⌊δ/β⌋ then
35: if p = (Roundp mod n + 1) then
36: send(ALIVE,Roundp) to every process exceptp /∗ the leader of the round periodically send ALIVE to each otherprocess∗/
37: end if
38: Leaderp ← (Roundp mod n + 1) /∗ p periodically computesLeaderp ∗/
39: SendTimerp ← 0
40: end if
41: end repeat

containing no eventually timely overlay.

Let mbe any message sent at a given timet. We say that a messagem’ is older thanm if and only if m’ was initially in a
link or m’ was sent at a timet′ such thatt′ < t. We callcausal sequenceany sequencep0,m1,...,mi,pi,mi+1,...,pk−1,mk

such that: (1)∀i, 0 ≤ i < k, pi is a process andmi+1 is a message, (2)∀i, 1 ≤ i < k, pi receivesmi from pi−1, and (3)
∀i, 1 ≤ i < k, pi sendsmi+1 after the reception ofmi. By extension, we say thatmk causally depends onp0. Also, we
say thatmk is anewmessage that causally depends onp0 after the messagemk′ if and only if there exists two causal
sequencesp0,m1,...,pk−1,mk andp0,m1′ ,...,pk′−1,mk′ such thatm1′ is older thanm1.

Lemma 2 LetA be any self-stabilizing leader election algorithm inS−3 . In every execution ofA, any alive process
p satisfies: from any configuration whereLeaderp 6= p, ∃k ∈ N such thatp changes its leader if it receives nonew
message that causally depends onLeaderp duringk times.

Proof. Assume, by the contradiction, that there exists an execution e where there is a configurationγ from which a
process satisfiesLeaderp = q forever withq 6= p while fromγ p does not receive anymore anewmessage that causally
depends onq. AsA is self-stabilizing, it can start from any configuration. So,−→eγ is a possible execution ofA. Let γ′ be
a configuration that is identical toγ except thatq is crashed inγ′. As p only received messages that do not depend onq
in −→eγ (otherwise, this means that fromγ, p eventually receives at least onenewmessage that causally depends onq in
e), there exists a possible execution−→eγ′ starting fromγ′ wherep received exactly the same messages as in−→eγ (the fact
thatq is crashed just preventsp from receiving the messages that causally depend onq). Hence,p cannot distinguish−→eγ

and−→eγ′ andp behaves in−→eγ′ as in−→eγ : it keepsq as leader forever whileq is crashed:A is not a self-stabilizing leader
election algorithm — a contradiction. 2

Theorem 7 There is no self-stabilizing leader election algorithm in asystemS−3 .

Proof. Assume, by the contradiction, that there exists a self-stabilizing leader election algorithmA in a systemS−3 .
By Definition 1, in any execution ofA, there exists a configurationγ such that in any suffix starting fromγ there exists
a unique leader and this leader no more changes. Lete be an execution ofA where no process crashes and every link

9

is timely. Let l be the process which is eventually elected ine. Consider now any executione′ identical toe except
that there is a time after which there is at least one link in each path froml to some processp that arbitrary delays
messages. Then,e ande′ can have an arbitrary large common prefix. Hence, it is possible to construct executions ofA
beginning with any prefix ofe wherel is eventually elected (during this prefix, every link behaves as a timely link) but
in the associated suffix, any causal sequence of messages from l to p is arbitrary delayed and, by Lemma 2,p eventually
changes its leader to a processq 6= l. Thus, for any prefix←−e of e where a process is eventually elected, there exists a
possible execution having←−e as prefix and an associated suffix−→e in which the leader eventually changes. Hence, for
some executions ofA, we cannot guarantee that from a certain configuration the leader will no more change:A is not a
self-stabilizing leader election algorithm — a contradiction. 2

By Definition, any systemS−3 is also a systemS2. Hence, follows:

Corollary 2 There is no self-stabilizing leader election algorithm in asystemS2 havingn ≥ 2 processes.

8 Communication-Efficient Pseudo-Stabilizing Leader Election in S2

From Corollary 2, we know that there does not exist any self-stabilizing leader election algorithm inS2. We now show
that pseudo-stabilizing leader elections exist inS2. The solution we propose is an adaptation of an algorithm provided
in [3] and is communication-efficient.

Algorithm 4 Communication-Efficient Pseudo-Stabilizing Leader Election onS2

CODE FOR EACH PROCESSp:
1: variables:
2: Leaderp ∈ {1,...,n}, OldLeaderp ∈ {1,...,n}
3: SendTimerp , ReceiveTimerp : non-negative integers
4: Counterp[1...n], Phasep[1...n]: arrays of non-negative integers /∗ to manage the accusations∗/
5: Collectp, OtherActivesp : sets of non-negative integers /∗ these sets are used to compute theActivesp set∗/
6:
7: macros:
8: Activesp = OtherActivesp ∪ {p}
9:
10: repeat forever
11: for all q ∈ V \ {p} do
12: if receive(ALIVE,qcnt,qph) from q then /∗ qcnt andqph correspond to the value ofCounterq [q] andPhaseq [q] whenq sends the message∗/
13: Collectp ← Collectp ∪ {q}
14: Counterp[q]← qcnt
15: Phasep[q]← qph
16: end if
17: if receive(ACCUSATION,ph) from q then /∗ on reception of an ACCUSATION message∗/
18: if ph = Phasep[p] then /∗ if the accusation is legitimate∗/
19: Counterp[p]← Counterp[p] + 1 /∗ Counterp[p] is incremented∗/
20: end if
21: end if
22: end for
23: SendTimerp ← SendTimerp + 1
24: if SendTimerp ≥ ⌊δ/β⌋ then /∗ if p believes to be the leader, it periodically sends ALIVE to each other∗/
25: if Leaderp = p then
26: send(ALIVE,Counterp[p],Phasep[p]) to every process exceptp
27: end if
28: SendTimerp ← 0
29: end if
30: ReceiveTimerp ← ReceiveTimerp + 1
31: if ReceiveTimerp > 5⌈δ/α⌉ then
32: OtherActivesp ← Collectp

33: if Leaderp /∈ Activesp then /∗ p sends an ACCUSATION message to its leader when it suspects it∗/
34: send(ACCUSATION,Phasep[Leaderp]) to Leaderp

35: end if
36: OldLeaderp← Leaderp

37: Leaderp← r such that (Counterp[r],r) = min{(Counterp[q],q) : q ∈ Activesp} /∗ p periodically computesLeaderp ∗/
38: if (OldLeaderp = p) ∧ (Leaderp 6= p) then /∗ whenp loses its leadership, it increments its phase∗/
39: Phasep[p]← Phasep[p] + 1
40: end if
41: Collectp ← ∅
42: ReceiveTimerp ← 0
43: end if
44: end repeat

To obtain communication-efficiency, Algorithm 4 uses the same principle as Algorithm 1: Each processp period-
ically sends ALIVE to all other processesonly if it thinks it is the leader. However, this principle cannot be directly
applied inS2: if the onlysource happens to be a process with a large ID, the leadershipcan oscillate among some other
alive processes infinitely often because these processes can be alternatively considered as crashed or alive.

To fix the problem, Aguileraet al propose in [3] that each processp stores in an accusation counter,Counterp[p],
how many time it was previously suspected to be crashed. Then, if p thinks that it is the leader, it periodically sends

10

ALIVE messages with its current value ofCounterp[p] (Lines 23-29). Any process stores in anActives set its own ID
and that of each process it recently received an ALIVE message (Lines 8 and 12-16). Also, each process keeps the most
up-to-date value of accusation counter of any process from which it receives an ALIVE message. Finally, any processq
periodically chooses as leader the process having the smallest accusation value among the processes in itsActivesq set
(IDs are used to break ties). After choosing a leader, if the leader ofq changes,q sends an ACCUSATION message to
its previous leader (Lines 33-35). The hope is that the counter of each source remains bounded (because all its output
links are timely), and, as a consequence, the source with thesmallest counter is eventually elected.

However, this algorithm still does not work inS2: the accusation counter of any source may increase infinitely often.
To see this, note that a sources can stop to consider itself as the leader: whens selects another processp as its leader (a
process inActivess with a smaller counter). In this case, the source volontary stops sending ALIVE messages for the
communication efficiency. Unfortunately, each other process that considereds as its leader eventually suspectss and,
so, sends ACCUSATION messages tos. These messages then cause incrementations ofs’accusation counter. Later,
due to the quality of the output links ofp (p may not be a source),p can also increase its accusation counter and then the
source may obtain the leadership again. As a consequence, the leadership may oscillate infinitely often.

To guarantee that the leadership does not oscillate infinitely often, Aguileraet aladd a mechanism so that the source
increments its own accusation counter only a finite number oftimes. A process now increments its accusation counter
only if it receives a “legitimate” accusation: an accusation due to the delay or the loss of one of its ALIVE message and
not due to the fact that it voluntary stopped sending messages. To detect if an accusation is legitimate, each processp
saves inPhasep[p] the number of times it loses the leadership in the past and includes this value in each of its ALIVE
messages (Line 26). When a processq receives an ALIVE message fromp, it also saves the phase value sent byp
in Phaseq[p] (Line 15). Hence, whenq wants to accusep, it now includes its own view ofp’s phase number in the
ACCUSATION message it sends top (Line 34). This ACCUSATION message will be considered as legitimate byp
only if the phase number it contains matches the current phase value ofp (Lines 18-20). Moreover, wheneverp loses the
leadership and stops sending ALIVE message voluntary,p incrementsPhasep[p] and does not send the new value to
any other process (Line 38-40): this effectively causesp to ignore all the spurious ACCUSATION messages that result
from its voluntary silence. Finally, note that Algorithm 4 uses two message types: ALIVE and ACCUSATION, as well
as, the two counters:SendT imerp andReceiveT imerp.

Theorem 8 below claims that, using the timestamps⌊δ/β⌋ and5⌈δ/α⌉ respectively forSendT imerp andReceive-
T imerp, Algorithm 4 is pseudo-stabilizing and communication-efficient for the leader election problem in any system
S2. Due to the lack of space, the proof of Theorem 8 has been movedto the appendix (Section D, page 19).

Theorem 8 Algorithm 4 implements a communication-efficient pseudo-stabilizing leader election in SystemS2.

9 Impossibility of Communication-Efficient Pseudo-Stabilizing Leader Elec-
tion in S1

Let S−1 be any systemS0 with an eventually timely source andn ≥ 3 processes. In [3], Aguileraet al show that there
is no communication-efficient leader election algorithm ina systemS−1 . Now, any pseudo-stabilizing leader election
algorithm inS1 is also a pseudo-stabilizing leader election algorithm inS−1 by Theorem 2 (page 5). Hence, follows:

Theorem 9 There is no communication-efficient pseudo-stabilizing leader election algorithm in a systemS1 having
n ≥ 3 processes.

10 Pseudo-Stabilizing Leader Election inS1

By Theorem 9, there is no communication-efficient pseudo-stabilizing leader election algorithm in a systemS1 having
n ≥ 3 processes. However, using similar techniques as those previously used in the paper, we can adapt the robust
but non communication-efficient algorithm forS−1 given in [1] to obtain a pseudo-stabilizing but non communication-
efficient leader election algorithm forS1. Due to the lack of space, we do not present the algorithm here, but the
algorithm and its proof of pseudo-stabilization are provided in the appendix (Section E, page 22).

11 Conclusion and Future Works

We studied the problem of implementing robust self- and pseudo- stabilizing leader election in various systems with
weak reliability and synchrony assumptions. We tried to propose, when it is possible,communication-efficientim-
plementations. We first show that the notions of immediate timeliness and eventually timeliness are “equivalent” in

11

stabilization in a sense that every algorithm which is stabilizing in a systemS having some timely links is also stabi-
lizing in the systemS′ whereS′ is the same system asS except that all the timely links inS are eventually timely in
S′, and reciprocally. Hence, we only consider timely properties that are immediate. We study systems where (1) all
the processes are timely and can communicate with each otherbut some of them may crash and, (2) some links may
have timely and reliability properties. We first showed thatthe full timelinessis minimal to have any self-stabilizing
communication-efficient leader election in the systems we consider. Nevertheless, we showed that a self-stabilizing
leader election that is not communication-efficient can be obtained in a weaker system: a system where there exists
a timely routing overlay. We also showed that no self-stabilizing leader election can be implemented in our systems
without this assumption. Hence, we then focused on the pseudo-stabilization. We showed that leader election can
be communication-efficiently pseudo-stabilized in the same systems than those where robust leader elections exist: in
systems having atimely bi-sourceand systems having atimely sourceandfair links (note that getting communication-
efficiency in a system having atimely routing overlayremains an open question). Using then a previous result of
Aguileraet al ([3]), we recalled that communication-efficiency cannot bedone if we consider systems having at least
one timely sourcebut where the fairness of all the links is not required. Finally, we showed that, as the robust leader elec-
tion, the pseudo-stabilizing leader election can be non-communication-efficiently implemented in such systems. Hence,
we can have a robust pseudo-stabilizing leader election in almost all the systems where a robust leader election already
exists: the gap between robustness and pseudo-stabilizingrobustness is not really significant in fix-point problems such
as leader election.

There is some possible extensions to this work. First, we canstudy robust stabilizing leader election in systems
where only a given number of processes may crash. Then, we canconsider the robust stabilizing leader election in some
other models as those in [15, 19]. We can also consider the robust stabilizing leader election in systems with various
topology. Finally, we can study the implementability of robust stabilizing decision problems such asconsensus.

References
[1] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. On implementing omega with weak reliability and synchrony

assumptions. Unpublished, journal version of [3], January2007.

[2] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. Stable leader election. InDISC, pages 108–122, 2001.

[3] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. On implementing omega with weak reliability and
synchrony assumptions. InPODC, pages 306–314, 2003.

[4] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. Communication-efficient leader election and consensus
with limited link synchrony. InPODC, pages 328–337, 2004.

[5] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. Consensus with byzantine failures and little system
synchrony. InDSN, pages 147–155, 2006.

[6] Efthymios Anagnostou and Vassos Hadzilacos. Tolerating transient and permanent failures (extended abstract). InWDAG, pages 174–188,
1993.

[7] J. Beauquier and S. Kekkonen-Moneta. Fault-tolerance and self-stabilization: Impossibility results and solutions using failure detectors.Int. J
of Systems Science, (11):1177–1187, 1997.

[8] Joffroy Beauquier, Maria Gradinariu, and Colette Johnen. Memory space requirements for self-stabilizing leader election protocols. InPODC
’99: Proceedings of the eighteenth annual ACM symposium on Principles of distributed computing, pages 199–207, New York, NY, USA, 1999.
ACM Press.

[9] Joffroy Beauquier and Synnöve Kekkonen-Moneta. On ftss-solvable distributed problems. InPODC, page 290, 1997.

[10] James E. Burns, Mohamed G. Gouda, and Raymond E. Miller.Stabilization and pseudo-stabilization.Distrib. Comput., 7(1):35–42, 1993.

[11] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for solving consensus.J. ACM, 43(4):685–722, 1996.

[12] EW Dijkstra. Self stabilizing systems in spite of distributed control.Communications of the Association of the Computing Machinery, 17:643–
644, 1974.

[13] S Dolev, A Israeli, and S Moran. Uniform dynamic self-stabilizing leader election.IEEE Transactions on Parallel and Distributed Systems,
8(4):424–440, 1997.

[14] Ajei S. Gopal and Kenneth J. Perry. Unifying self-stabilization and fault-tolerance (preliminary version). InPODC, pages 195–206, 1993.

[15] Martin Hutle, Dahlia Malkhi, Ulrich Schmid, and LidongZhou. Brief announcement: Chasing the weakest system modelfor implementing
omega and consensus. InProceedings Eighth International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2006),
LNCS, pages 576–577, Dallas, USA, Nov. 2006. Springer Verlag.

[16] Martin Hutle and Josef Widder. On the possibility and the impossibility of message-driven self-stabilizing failure detection. InSelf-Stabilizing
Systems, pages 153–170, 2005.

[17] Martin Hutle and Josef Widder. Self-stabilizing failure detector algorithms. InParallel and Distributed Computing and Networks, pages
485–490, 2005.

[18] Mikel Larrea, Antonio Fernández, and Sergio Arévalo. Optimal implementation of the weakest failure detector for solving consensus. InSRDS,
pages 52–59, 2000.

[19] Dahlia Malkhi, Florian Oprea, and Lidong Zhou.megameets paxos: Leader election and stability without eventual timely links. InDISC, pages
199–213, 2005.

[20] T. Masuzawa. A fault-tolerant and self-stabilizing protocol for the topology problem.Proceedings of the second Workshop on Self-Stabilizing
Systems, page article 1, 1995.

12

APPENDIX

The following observation is used along the proofs of Theorems A to E.

Observation 1 For every alive processp, for every timet, p executes at least onecompleteiteration of itsrepeat forever
loop during the time interval[t, t + 2β[.

A Proof of Theorem 3

Starting from any configuration, since the second iterationof therepeat foreverloop begins (after at mostβ times), we
are sure that any processp sends a message only if the test of Line 16 is true,i.e., only if Leaderp = p 5. Hence:

Observation 2 Starting from any configuration, a processp sends a message at timet>β only if Leaderp=p at timet.

Lemma 3 Starting from any configuration, if a processq receives a messagem at timet > δ + 3β, then there exists
another alive processp that sendsm whileLeaderp = p at a timet′ such thatt− (δ + 2β) ≤ t′ < t.

Proof. The lemma is proven by the following three claims:

1. Any process that is crashed in the initial configuration never sends any message during the execution.

2. q cannot receive at timet > δ + 2β a message that was in a link since the initial configuration.

Claim Proof: In S5, all messages initially in the links are delivered at most attime δ. Whenq receives such
a message, it is received at most one completerepeat foreverloop iteration after its delivrance: at most at time
δ + 2β by Observation 1. So, any message received byq at any timet > δ + 2β was not initially in the link.

3. q receives a messagem from the alive processp at timet > δ+3β only if p sendsm while satisfyingLeaderp = p
at a timet′ such thatt− (δ + 2β) ≤ t′ < t.

Claim Proof: By Claim 2,q receivesm at timet > δ + 3β only if p effectively sendsm to q at a timet′ < t.
As q receivesm at most2β times (one complete iteration of therepeat foreverloop) after its delivrance andm is
delivered at mostδ times after its sending, we can deduce thatt′ ≥ t − (δ + 2β). Finally, ast′ ≥ t − (δ + 2β)
andt > δ + 3β, we havet′ > β and, by Observation 2, we can deduce thatp satisfiesLeaderp = p at timet′.

2

Starting from any configuration, since the second iterationof therepeat foreverloop begins (after at mostβ times), any
processq setsLeaderq to p 6= q only if q previously receives ALIVE fromp. Hence, follows:

Observation 3 Starting from any configuration, any processq setsLeaderq to p 6= q at timet > β only if q previously
receives ALIVE fromp.

From the code of Algorithm 1, Observation 3, and Lemma 3, we can deduce the following lemma:

Lemma 4 Starting from any configuration, any processq switchesLeaderq from q to p 6= q at timet > δ + 3β only if:
(1) p is an alive process andp<q, and (2)p sends ALIVE toq whileLeaderp=p at a timet′ with t−(δ+2β)≤ t′<t.

Definition 3 LetCandidates(t) be the set containing any alive processp such thatLeaderp = p at timet.

Lemma 5 Starting from any configuration,∀i ∈ N
+, ∀t > β + i(δ + 2β), if Candidates(t) > 0 and∃t′ > t such that

Candidates(t′) = 0, then there exists an alive processp such thatp < [min(Candidates(t))− (i− 1)] and a timeti
with t− i(δ + 2β) < ti < t′ such thatLeaderp = p at timeti.

Proof. By induction oni.
Induction fori = 1: Let t be a time such thatt > δ + 3β. Assume thatCandidates(t) > 0 and∃t′ > t such that

Candidates(t′) = 0. Let q = min(Candidates(t)). There is a timetj such thatt < tj ≤ t′ whereq switchesLeaderq

from q to p 6= q. By Lemma 4,p is an alive process such thatp < q andp sends ALIVE toq while Leaderp = p at a
time ti with tj − (δ + 2β) ≤ ti < tj . Now, t < tj ≤ t′. So,t− (δ + 2β) < ti < t′ and the induction holds fori = 1.

5n.b., the program counter ofp can initially point out to Line 17: thenp may send messages during the first loop iteration whileLeaderp 6= p.

13

Induction Assumption:Let k ∈ N
+. Assume that∀i ∈ N

+ such thati ≤ k we have:∀t > β + i(δ + 2β), if
Candidates(t) > 0 and∃t′ > t such thatCandidates(t′) = 0, then there exists an alive processp < [min(Candida-
tes(t)) − (i− 1)] and a timeti with t− i(δ + 2β) < ti < t′ such thatLeaderp = p at timeti.

Induction fori = k + 1: Let t be a time such thatt > β + (k + 1) × (δ + 2β). Assume thatCandidates(t) > 0
and∃t′ > t such thatCandidates(t′) = 0. Let q = min(Candidates(t)). As previously, there is a timetj such that
t < tj ≤ t′ whereq switchesLeaderq from q to r 6= q and, by Lemma 4,r is an alive process such thatr < q andr
sends ALIVE toq while Leaderr = r at a timetr with tj − (δ + 2β) ≤ tr < tj . Now, tr > β + k × (δ + 2β) and
Candidates(tr) > 0, so, by induction assumption: there exists an alive processp < min(Candidates(tr))− (k − 1)
and a timetk with tr − k(δ + 2β) < tk < t′ such thatLeaderp = p at timetk.

(a) We now show thatp < [min(Candidates(t))−k]. First,min(Candidates(tr))≤ r, so,p < r− (k−1). Then,
r < q, so,r ≤ q−1 (remember thatV = {1,...,n}). Hence,p < q−1−(k−1), i.e., p < [min(Candidates(t)−k].

(b) Finally, we show thatp is an alive process such thatLeaderp = p at timetk with t − (k + 1) × (δ + 2β) <
tk < t′. First, we already know thatp is an alive process such thatLeaderp = p at timetk. Then,t < tj and
tj−(δ+2β) ≤ tr implies thatt−(δ+2β) < tr. Finally, astr−k(δ+2β) < tk < t′ andt−(δ+2β) < tr, we have
[t−(δ+2β)−k(δ+2β)] < tk < t′. Hence,p satisfiesLeaderp = p at timetk with t−(k+1)×(δ+2β) < tk < t′.

Hence, by (a) and (b), we can deduce that the induction holds for i = k + 1. 2

Lemma 6 Starting from any configuration,∀t > β + n(δ+2β), (Candidates(t)>0)⇒ (Candidates(t′)>0, ∀t′>t).

Proof. Assume, by the contradiction, that∃t > β + n(δ + 2β) such thatCandidates(t) > 0 and∃t′ > t such that
Candidates(t′) = 0. Then, by Lemma 5, there exists an alive processp such thatp < min(Candidates(t))− (n− 1)
and a timet′′ with t − n(δ + 2β) < t′′ < t′ such thatLeaderp = p at timet′′. Now, min(Candidates(t)) ≤ n
(V = {1,...,n}). So,p < n− (n− 1), i.e., p < 1 — a contradiction. 2

Starting from any configuration, since the second iterationof therepeat foreverloop begins (after at mostβ times), any
processp executes Line 11 of the algorithm only if the test of Line 7 is true. Hence, follows:

Observation 4 Starting from any configuration, any processp executes Line 11 at timet > β only if p previously
receives an ALIVE message (in the same iteration of therepeat foreverloop).

Lemma 7 Starting from any configuration,∀t > (n + 1)δ + (2n + 8⌈δ/α⌉+ 6)β + 1, Candidates(t) > 0.

Proof. Consider the time interval[(n + 1)(δ + 2β) + 2β + 1, (n + 1)δ + (2n + 8⌈δ/α⌉+ 6)β + 1].

- Assume that there exists a processp that executes Line 11 at a timet ∈ [(n + 1)(δ + 2β) + 2β + 1, (n + 1)δ +
(2n + 8⌈δ/α⌉ + 6)β + 1]. Then,p receives an ALIVE message from a processq before executing Line 11 but
in the same iteration of therepeat foreverloop by Observation 4,i.e., at mostβ times before. So,p receives an
ALIVE message fromq at a timet′ ∈ [(n+1)(δ +2β)+β +1, (n+1)δ +(2n+8⌈δ/α⌉+6)β +1[. By Lemma
3, q is alive and sends ALIVE while satisfyingLeaderq = q at a timet′′ such thatt′ − (δ + 2β) ≤ t′′ < t′.
So,Candidates(t′′) > 0 with t′′ ∈ [n(δ + 2β) + β + 1, (n + 1)δ + (2n + 8⌈δ/α⌉+ 6)β + 1[and∀t′′′ > t′′,
Candidates(t′′′) > 0 by Lemma 6. Ast′′ < (n + 1)δ + (2n + 8⌈δ/α⌉+ 6)β + 1, the lemma holds in this case.

- Assume that no process executes Line 11 during the time interval [(n + 1)(δ + 2β) + 2β + 1, (n + 1)δ + (2n +
8⌈δ/α⌉+ 6)β + 1].

(i) If Candidates((n + 1)(δ + 2β) + 2β + 1) > 0, then∀t > (n + 1)(δ + 2β) + 2β + 1, Candidates(t) > 0
by Lemma 6 and the lemma holds in this case.

(ii) Assume now thatCandidates((n+1)(δ+2β)+2β+1) = 0, i.e., any alive processp satisfiesLeaderp 6= p
at time(n + 1)(δ + 2β) + 2β + 1. Then, the program counter of any alive processp points out to the first
instruction of therepeat foreverloop at a time(n + 1)(δ + 2β) + 2β + 1 ≤ t ≤ (n + 1)(δ + 2β) + 3β + 1.
From t, p executes a complete iteration of the loop at most everyβ times. So, eachp executes at least
8⌈δ/α⌉ + 1 complete loop iterations from timet to time (n + 1)δ + (2n + 8⌈δ/α⌉ + 6)β + 1. Now, we
assume that no process executes Line 11 from timet to time (n + 1)δ + (2n + 8⌈δ/α⌉ + 6)β + 1. So,
during this period, we are sure that, for each alive processp, ReceiveT imerp is incremented at each loop
iteration untilReceiveT imerp > 8⌈δ/α⌉. As ReceiveT imer is always greater or equal to 0, any alive
process satisfiesReceiveT imerq > 8⌈δ/α⌉ and setsLeaderp to p at the lattest during the(8⌈δ/α⌉+ 1)th

loop iteration executed in the time interval we consider. Thus, anyp setsLeaderp to p at a timet′ ≤
(n + 1)δ + (2n + 8⌈δ/α⌉+ 6)β + 1. In this case,Candidates(t′) > 0 and the lemma holds by Lemma 6.

14

2

Lemma 8 Starting from any configuration, if an alive processp continuously satisfiesLeaderp = p during the time
interval [t, t + δ + β], thenp sends at least one ALIVE message to any other process during this time interval.

Proof. Let t be any time. Fromt, the program counter ofp points out to the first instruction of therepeat foreverloop
at a timet′ ≤ t + β. Fromt′, p executes a complete iteration of the loop at most everyβ times. Also, fromt′, while
SendT imerp < ⌊δ/β⌋, SendT imerp is incremented at each loop iteration. So, asSendT imerp is always greater or
equal to 0,SendT imerp ≥ ⌊δ/β⌋ becomes true at the lattest during the⌊δ/β⌋th loop iteration fromt′ andp sends
ALIVE to any other process in the same loop iteration (Lines 14-20). Hence, fromt′, p sends ALIVE to any other
process in at most⌊δ/β⌋ × β times,i.e., in at mostδ times. Ast′ ≤ t + β, the lemma is proven. 2

Lemma 9 Starting from any configuration,∀t > (n + 1)δ + (2n + 8⌈δ/α⌉+ 6)β + 1, ∃t′ ∈ [t, t + 2δ + 3β] such that
an alive process sends ALIVE to every other processes at timet′.

Proof. Let t such thatt > (n + 1)δ + (2n+ 8⌈δ/α⌉+6)β + 1. By Lemma 7,∀t′, t′ ≥ t, there exists at least one alive
processq such thatLeaderq = q at timet′. Let p be an alive process such thatLeaderp = p at timet + δ + 2β.

- Assume thatp continuously satisfiesLeaderp = p during the time interval[t + δ + 2β, t + 2δ + 3β]. Then,p
sends at least one ALIVE message to any other process during[t + δ + 2β, t + 2δ + 3β] by Lemma 8.

- Assume that there is a timet′ ∈]t+δ+2β, t+2δ+3β] wherep setsLeaderp to q such thatq 6= p. Then,q is alive
andq sends ALIVE top at a timet′′ such thatt′ − (δ + 2β) ≤ t′′ < t′ by Lemma 4. From Algorithm 1,q sends
ALIVE to every other process at timet′′. Finally, ast+δ+2β < t′ ≤ t+2δ+3β, we havet < t′′ ≤ t+2δ+3β.
Hence, at least one alive process (actually,q) sends ALIVE to every other processes during[t, t + 2δ + 3β].

2

Starting from any configuration, since the second iterationof therepeat foreverloop begins (after at mostβ times), we
are sure that a processp setsLeaderp to p (Line 24) only if the two tests of Lines 22-23 are true. Hence,follows:

Observation 5 Starting from any configuration, any processp setsLeaderp to p at timet > β only if (Leaderp 6= p)
∧ (ReceiveT imerp > 8⌈δ/α⌉) at timet.

Lemma 10 Starting from any configuration,p setsLeaderp to p at timet > 8δ only if p do not receive any ALIVE
message during[t− 8δ, t].

Proof. Assume, by the contradiction, that an alive processp receives at least one ALIVE message during[t − 8δ, t]
(with t > 8δ) but p setsLeaderp to p at timet. From Algorithm 1, after receiving ALIVE (Line 7),p resetsReceive-
T imerp to 0 (Line 11) andp does not setLeaderp to p between these two actions. Hence,ReceiveT imerp = 0 holds at
a timet′ ∈ [t−8δ, t]. Now, to setLeaderp to p at timet, p must satisfy(Leaderp 6= p)∧ (ReceiveT imerp > 8⌈δ/α⌉)
by Observation 5. AsReceiveT imerp is incremented only once at each iteration of therepeat foreverloop,Receive-
T imerp will be greater than8⌈δ/α⌉ after at least8⌈δ/α⌉+ 1 iterations fromt′. As each iteration is executed in at least
α times,ReceiveT imerp will be greater than8⌈δ/α⌉ after at least8δ + α times fromt′. As t′ + 8δ + α > t, we can
conclude thatp cannot setLeaderp to p during[t− 8δ, t] — a contradiction. 2

Lemma 11 Starting from any configuration,∀t > (n+4)δ +(2n+8⌈δ/α⌉+11)β +1, every alive processp satisfies:
if Leaderp 6= p at timet, thenLeaderp 6= p forever from timet.

Proof. By Lemma 9,∀t > (n + 1)δ + (2n + 8⌈δ/α⌉+ 6)β + 1, ∃t′ ∈ [t, t + 2δ + 3β] such that an alive process sends
ALIVE to p at timet′. As all the links are timely, such a message is delivered at mostδ times after its sending. Also, each
alive process receives a messagemat most one complete iteration of itsrepeat foreverloop after the delivrance ofm, i.e.,
at most2β times after the delivrance ofmby Observation 1, page 13. Thus,∀t > (n + 1)δ + (2n + 8⌈δ/α⌉+ 6)β + 1,
p receives ALIVE after at most3δ + 5β times fromt. As 3δ + 5β < 8δ, we have:∀t > (n + 1)δ + (2n + 8⌈δ/α⌉+
6)β + 1 + 3δ + 5β, i.e., ∀t > (n + 4)δ + (2n + 8⌈δ/α⌉+ 11)β + 1, any alive processp do not setLeaderp to p at time
t by Lemma 10 and the lemma is proven. 2

Lemma 12 Starting from any configuration,∀t > (n + 6)δ + (2n + 8⌈δ/α⌉+ 14)β + 1, every alive processp satisfies
Leaderp = l forever wherel is an alive process.

15

Proof. ∀t > (n + 4)δ + (2n+ 8⌈δ/α⌉+11)β + 1, Candidates(t) > 0 by Lemma 7 and,∀t′ ≥ t, Candidates(t′) ⊆
Candidates(t) by Lemma 11. So, there is some processesp such thatLeaderp = p at any timet′ ∈ [t, t + δ + β].
Let Finalists(t) be the set of these processes. Letl = min(Finalists(t)). By Lemma 8,l sends at least one ALIVE
message to every other alive process during this time interval. These ALIVE messages are delivered at mostδ times
after their sending because all the links of the system are timely. Finally, each alive process receives a messagem at
most one complete iteration of itsrepeat foreverloop after the delivrance ofm, i.e., at most2β times after the delivrance
of m by Observation 1, page 13. Hence, at most2δ + 3β times fromt, every alive processp such thatp 6= l receives
ALIVE from l and setsLeaderp to l is the same loop iteration (Lines 6-13). At the end of the loopiteration,i.e., at most
2δ + 4β times fromt, every alive processp satisfiesLeaderp = l andl is now the only process able to send ALIVE
(Lines 16-18). Hence, every alive processp satisfiesLeaderp = l forever at most2δ + 3β times fromt. 2

Proof of Theorem 3. By Lemma 12, starting from any configuration, the system reaches in aboundedtime a configu-
rationγ from which there is a unique leader forever. As the time to reach γ is bounded, this means that, starting from
any configuration, after a bounded time, the system is in a configuration from which it cannot deviate from its specifi-
cation whatever the execution we consider. Hence, Algorithm 1 is a self-stabilizing leader election algorithm. Also, in
Algorithm 1 only a processp such thatLeaderp = p can send messages. So, since the system is stabilized, only one
process (actually, the leader) sends messages: Algorithm 1is communication-efficient.2

B Proof of Theorem 5

Lemma 13 Starting from any configuration, any alive process eventually no more receives (ALIVE,−,q) messages
whereq is any crashed process.

Proof. Let q be any process that is crashed in the initial configuration. First, asq is crashed, the messages containing
(ALIVE,1,q) are no more sent. Then, each time a process receives an (ALIVE,k,q) message, it sends (ALIVE,k + 1,q)
only if k ≤ n− 1 (Lines 11-16 of Algorithm 2). Finally, every message in transit is eventually received or lost. So, the
number of (ALIVE,−,q) messages in the system decreases infinitely often until reaching zero. 2

Lemma 14 Starting from any configuration, any alive processp sends (ALIVE,1,p) to all other processes at least every
δ + β times.

Proof. Consider any timet. Fromt, the program counter ofp points out to the first instruction of therepeat forever
loop at a timet′ ≤ t+β. Fromt′, p executes a complete iteration of the loop at most everyβ times. Now, fromt′, while
SendT imerp < ⌊δ/β⌋, SendT imerp is incremented at each loop iteration. So, asSendT imerp is always greater or
equal to 0, the testSendT imerp ≥ ⌊δ/β⌋ becomes true at the lattest during the⌊δ/β⌋th loop iteration fromt′ andp
sends (ALIVE,1,p) to all other processes in the same loop iteration (Lines 19-22). Hence, fromt′, p sends (ALIVE,1,p)
to all other processes in at most⌊δ/β⌋ × β times,i.e., in at mostδ times. Ast′ ≤ t + β, the lemma is proven. 2

Definition 4 LetG′ = (V ′,E′) be the strongly connected graph representing the timely routing overlay of the system.

Lemma 15 Let p and q be two alive processes such thatp 6= q. Starting from any configuration,p receives an
(ALIVE,d,q) message at least every(d + 1)δ + 3dβ times whered is the distance fromq to p in G′.

Proof. Let p andq be two alive processes. We prove this lemma by induction on the distanced from q to p in G′.
Induction ford = 1: Assume that the distance fromq to p is equal to 1 inG′. This means that the link(q,p) exists

in G′, i.e., there exists a directed timely link fromq to p in the communication graph of the system.

1. By Lemma 14,q sends (ALIVE,1,q) to each other process (in particularp) everyδ + β times.

2. Each (ALIVE,1,q) message sent fromq to p is delivered top at mostδ times after its sending thanks to the
timeliness the the link fromq to p.

3. p receives a message sent fromq at most one complete iteration of therepeat foreverloop after its delivrance,i.e.,
at most2β times after its delivrance by Observation 1.

Hence,p receives an (ALIVE,1,q) message at most every2δ + 3β times and the induction is verified for the distance 1.
Induction Assumption:Let k such that1 ≤ k < D whereD is the diameter ofG′. Assume that every alive process

at distancek from q in G′ receives an (ALIVE,k,q) message at least every(k + 1)δ + 3kβ times.
Induction ford = k + 1: Let i be process at distancek + 1 from q. Let j by a neighbor ofi at distancek from q.

16

1. j receives an (ALIVE,k,q) message at least every(k + 1)δ + 3kβ times by induction assumption.

2. Ask < D andD ≤ n − 1, we havek < n − 1, so, after each reception of any (ALIVE,k,q) message,j sends
(ALIVE,k + 1,q) to i in the samerepeat foreverloop iteration (Lines 11-16),i.e., j sends (ALIVE,k + 1,q) to i
within β times after each reception of (ALIVE,k,q).

3. Each (ALIVE,k + 1,q) message sent fromj to i is delivered toi at mostδ times after its sending thanks to the
timeliness the link fromj to i.

4. i receives a message sent fromj at most one complete iteration of therepeat foreverloop after its delivrance,i.e.,
at most2β times after its delivrance by Observation 1.

Hence,i receives an (ALIVE,k + 1,q) message at least every(k + 1)δ + 3kβ + β + δ + 2β timesi.e., every3(k + 2)δ +
3(k + 1)β times and the induction holds for the distancek + 1. 2

The distance from each alive process to another alive process is bounded byn− 1 in G′. Hence:

Corollary 3 Let p and q be two alive processes such thatp 6= q. Starting from any configuration,p receives an
(ALIVE,−,q) message at least everynδ + 3(n− 1)β times.

Lemma 16 Letp be an alive process. Starting from any configuration,Alivesp is eventually equal to the set of all alive
processes forever.

Proof.

1. We first show thatAlivesp eventually only contains IDs of alive processes.

Assume, by the contradiction, thatq ∈ Alivesp holds infinitely often whileq is crashed. Asp is alive,p 6= q and
q ∈ OtherAlivesp holds infinitely often (Alivesp = OtherAlivesp ∪ {p}). Now,OtherAlivesp is periodically
set toCollectp (Line 25) andCollectp is periodically reset to∅ (Line 27). So,q is inserted intoCollectp infinitely
often and, to that goal,p receives (ALIVE,−,q) messages infinitely often — a contradiction by Lemma 13.

2. We now show thatAlivesp eventually contains the IDs of any alive process forever.

Let q be an alive processes. First, ifp = q, then the claim trivially holds. Consider now the case wherep 6= q.
To show the claim, we prove thatq ∈ OtherAlivesp eventually holds forever. From Lines 23-29, we know that
p periodically resetsCollectp to ∅. After p resetsCollectp (Line 27),p resetsReceiveT imerp to 0 (Line 28),
and then waits at least(4n − 3)⌈δ/α⌉ + 1 iterations of itsrepeat foreverloop before executingOtherAlivesp

← Collectp (Line 25). Asp executes every iteration of itsrepeat foreverloop in at leastα times,p waits at least
(4n − 3)δ + α times before executingOtherAlivesp ← Collectp. During this period,p receives at least one
(ALIVE,−,q) message for any other alive processq by Corollary 3. So, during this period,p inserts each alive
processq 6= p in Collectp (Line 12). Hence, since the first execution ofOtherAlivesp ← Collectp after the first
execution ofCollectp ← ∅, OtherAlivesp contains the IDs of any alive process forever.

2

Proof of Theorem 5. In Algorithm 2, each alive processp periodically setsLeaderp to min(Alivesp) (Lines 23-29).
Hence, by Lemma 16, each alive process eventually designates the alive process with the smallest ID as its own leader.
As each process that is alive in the initial configuration is alive forever, this process is the same during the whole
execution. So, ifl is the alive process with the smallest ID in an arbitrary configurationγ, then, in any execution starting
from γ, every alive processp eventually satisfiesLeaderp = l forever and the theorem holds.2

C Proof of Theorem 6

In the following, we denote byvart
p the value ofvarp at timet. We also denote byb the timely bi-source of the system.

Definition 5 We say that a processp startsRoundk at timet if p executesStartRound(k) at timet. We say that a
processp is in Roundk at timet if Roundp = k at timet. We say that a processp times outon Roundk at timet if
Roundp = k ∧ReceiveT imerp > 8⌈δ/α⌉ whenp executes Line 27 at timet.

Lemma 17 Starting from any configuration,∃k ∈ N such that: if some process starts a round greater thank, then
some process previously times out on roundk.

17

Proof. Starting from any configuration, since all alive processes have begun their2nd repeat foreverloop iteration,
we are sure that an alive process executes Line 29 only after it times out. So, lett be the first time after which all
alive processes have begun their2nd repeat foreverloop iteration. Letk be the maximal round value in the network
(considering messages and processes). Any round valuek′ > k appears in the network only when at least one process
times out onk′ − 1. The lemma is then proven through a simple induction argument. 2

Corollary 4 Starting from any configuration,∃k ∈ N such that∀k′ ≥ k, if a process starts Roundk′ + 1, then some
process previously started Roundk′.

Lemma 18 Starting from any configuration, if an alive processp continuously satisfiesRoundp mod n+1 = p during
the period[t, t + δ + β], thenp sends at least one (ALIVE,Roundt

p) message to any other process during this period.

Proof. Similar to the proof of Lemma 8, page 15. 2

Lemma 19 Processes start finitely many rounds.

Proof. Assume, by the contradiction, that some processp starts infinitely many rounds. Then, by Lemma 17 and
Corollary 4,∃k ∈ N such that∀k′ ≥ k, some process starts Roundk′ and some process times out on Roundk′.

Consider the timet0 where the round valuek appears in the system. Consider now any timet1 such thatt1 ≥ t0. Let
L be the largest value sent by timet1 in any message. LetL′ be the first value greater thanL such thatL′ mod n = b.
Let t2 be the earliest time when some processp times out on RoundL′ − 1. By Lemma 17, (1) a process can only start
RoundL′ after timet2. Now, t2 > t1 by definition ofL′, and thus processp is alive, so it not only times out on Round
L′ − 1 but it also starts RoundL′ and two cases are possible:

1. p = b. Then,p sends (ALIVE,L′) to all other processes before timet2 + β (before the end of the loop iteration).

2. p 6= b. In this case,p sends (START,L′) to b before timet2 + β (before the end of the current loop iteration).
This message is delivered tob at mostδ times later. So,b receives such a message at mostδ + 2β times later
by Observation 1 (page 13),i.e., at most at timet2 + δ + 3β. Finally, during the loop iteration where it receives
(START,L′), i.e. during]t2,t2 + δ + 4β], b starts RoundL′ and sends (ALIVE,L′) to all other processes.

Hence, in the worst case, (2) any alive process different ofb is guaranteed to receive the first (ALIVE,L′) by time
t2 + 2δ + 6β (t2 + δ + 4β plus δ times for the delivrance and2β times for the reception after the delivrance) and,
henceforth, another such a message at least every2δ + 3β times whileL′ has not been timed out on (by Lemma 18,
while L′ has not been timed out on,b sends (ALIVE,L′) everyδ + β times and, similary to the previous cases, such a
message is receivedδ + 2β times after its sending). To time out on RoundL′, a process must have startedL′ and must
failed to receive a message fromb for more than8⌈δ/α⌉ complete loop iterations,i.e., for more than8δ times. Therefore,
through a simple induction argument, (1) and (2) implies that no process ever times out onL′. This contradicts the fact
that every round is started and timed out. 2

Let K be the largest round started by any alive process and letP = K mod n.

Lemma 20 P sends an infinite number of (ALIVE,K) messages to all others alive processes.

Proof. Let p an alive process that is in RoundK. If P only sends a finite number of (ALIVE,K) messages top, then
p eventually starts a round larger thanK — a contradiction. 2

Lemma 21 There is a time after which, for every alive processp, Leaderp = P .

Proof. Immediate from the definition ofK and Lemma 20. 2

Corollary 5 There is a time after which onlyP sends messages.

Proof of Theorem 6. Immediate from Lemma 21 and Corollary 5.2

18

D Proof of Theorem 8

In the following, we denote byvart
p the value ofvarp at timet. Also, we denote bys the timely source of the system.

Lemma 22 Starting from any configuration, for every alive processp and every processq such thatq 6= p: if q ∈
Activesp holds infinitely often, thenp receives ALIVE messages fromq infinitely often.

Proof. Let p andq be two processes such thatp is alive andq 6= p. Assume thatq ∈ Activesp holds infinitely often.
As q 6= p, q ∈ OtherAlivesp also holds infinitely often (Line 8). AsOtherActivesp is periodically reset toCollectp
(Line 32),q ∈ Collectp holds infinitely often. Now,Collectp is periodically reset to∅ (Line 41). So,q is inserted into
Collectp infinitely often. To that goal,p must receive ALIVE message fromq infinitely often (Lines 12-16). 2

Observation 6 For every processp, Counterp[p] andPhasep[p] are monotonically nondecreasing with time.

Lemma 23 Let p andq be two distinct processes. Starting from any configuration,if p receives ALIVE messages from
q infinitely often, thenq is alive and, for every timet, there is a time after whichCounterp[q] ≥ Countert

q[q] and
Phasep[q] ≥ Phaset

q[q] forever.

Proof. Let p andq be two processes such thatp 6= q. Assume thatp receives ALIVE messages fromq infinitely
often. As the number of messages initially in the link (q,p) is finite, p eventually only receives messages that have
been sent byq. So, q sends such messages infinitely often and, as a consequence,q is alive. Consider now any
time t. As every message in the link(q,p) is eventually received or lost, there is a timet′ > t from which p only
receives fromq ALIVE messages that have been sent byq after timet. Now, any (ALIVE,qcnt,qph) message sent
by q to p after timet satisfiesqcnt ≥ Countert

q[q] andqph ≥ Phaset
q[q] becauseCounterq[q] andPhasep[p] are

monotonically nondecreasing (Observation 6). Thus, fromt′, p only receives fromq (ALIVE,v,w) messages such that
v ≥ Countert

q[q] andw ≥ Phaset
q[q]. Now, each timep receives such an (ALIVE,v,w) message fromq, Counterp[q]

is set tov andPhasep[q] is set tow (Lines 12-16) and this is the only way thatp can modifyCounterp[q] or Phasep[q].
Hence,Counterp[q] ≥ Countert

q[q] andPhasep[q] ≥ Phaset
q[q] eventually hold forever. 2

Lemma 24 Starting from any configuration, for every alive processp and every processq, if q ∈ Activesp holds
infinitely often, thenq is alive and, for every timet, there is a time after whichCounterp[q] ≥ Countert

q[q] and
Phasep[q] ≥ Phaset

q[q] forever.

Proof. Assume thatp = q. In this case, the lemma holds becausep is alive andCounterp[p] andPhasep[p] are
monotically nondecreasing by Observation 6. Assume now that p 6= q. If q ∈ Activesp holds infinitely often, then by
Lemma 22,p receives ALIVE messages fromq infinitely often and the lemma holds by Lemma 23. 2

Lemma 25 For every alive processp andq, if p sends a message of typeT to q infinitely often, thenq receives a message
of typeT from q infinitely often.

Proof. Since the link(p,q) is fair, the lemma is trivial. 2

Starting from any configuration, since the second iterationof therepeat foreverloop begins (after at mostβ times), we
are sure that any processp sends ALIVE (Line 26) only if the test of Line 25 is true,i.e., only if Leaderp = p. Hence:

Observation 7 Starting from any configuration, a processp sends ALIVE at a timet>β only if Leaderp=p at timet.

Starting from any configuration, since the second iterationof therepeat foreverloop begins (after at mostβ times), we
are sure that any process executes Line 37 only if it previously executes Line 36. Hence, follows:

Observation 8 Starting from any configuration, any processp switchesLeaderp from p to q 6= p at a timet > β only
if OldLeaderp = p at timet.

Lemma 26 For every processp 6= s and everyk ≥ 0, if s sends (ALIVE,−,k) to p at some timet > β, then:

- s sends another (ALIVE,−,k) message top during time interval]t,t + δ + β], or

- Phases[s] > k holds at timet + δ + β.

Proof. First, s satisfiesLeaders = s at timet by Observation 7. Then,k = Phases[s]
t (Line 26). Consider now the

two following cases:

19

- Assume thats switchesLeaders from s to q 6= s at a timet′ ∈]t,t+δ] (Line 37). Then,s satisfiesOldLeaders =
s at time t′ by Observation 8 and, so, incrementsPhases[s] (Line 39) before the end of the currentrepeat
foreverloop iteration,i.e., before timet′ + β. Now, ast′ ∈]t,t + δ] andPhases[s] is monotically nondecreasing
(Observation 6), the lemma holds in this case.

- Assume thats continuously satisfiesLeaders = s during the time interval]t,t+δ]. Then, ass sends (ALIVE,−,k)
to p at timet (Line 26),s resetsSendT imers to 0 (Line 28) before the beginning of the nextrepeat foreverloop
iteration. So, when the program counter ofs points out to the first instruction of therepeat foreverloop at a time
t′ such thatt < t′ ≤ t + β, SendT imers = 0. From t′, s executes a complete loop iteration at most everyβ
times. So, after executing⌊δ/β⌋ − 1 complete iterations,s points out to the first intruction of the loop at a time
t′′ ≤ t + δ, SendT imers = ⌊δ/β⌋ − 1 (SendT imers is incremented at each loop iteration), ands can still
execute a complete iteration of the loop in the time interval[t′′,t+ δ +β]. During this loop iteration,s increments
SendT imers to ⌊δ/β⌋ (Line 23) and, ass satisfies the test of Lines 24 and 25,s sends another alive message
to p (Line 26) before the end of the iteration,i.e., before timet + δ + β. As s points out to Line 26 at timet (s
sends ALIVE top at timet) ands continuously satisfiesLeaders = s during the time interval[t,t+ δ], s does not
incrementsPhases[s] during]t,t + δ + β]. So, whens sends another ALIVE message top during time interval
]t,t+δ+β], Phases[s] = Phases[s]

t and, as a consequence, the message is of the following form: (ALIVE,−,k)
and the lemma also holds in this case.

2

As all the output links ofs are timely, we can deduce the following:

Observation 9 If s sends a messagem to another processp at some timet, thenm is delivered top from s at most at
timet + δ.

Assume that a messagem is delivered to a processp. Then,p receives a message of the same type ofm at most one
complete iteration of itsrepeat foreverloop after the delivrance ofm. Hence, by Observations 1 (page 13) and 9:

Lemma 27 Starting from any configuration, ifs sends ALIVE to another processp at timet, thenp receives at least
one ALIVE message froms during the time interval]t, t + δ + 2β].

Lemma 28 Counters[s] is bounded.

Proof. Assume, by the contradiction, thatCounters[s] is unbounded. Then,s executes Line 19 of the algorithm
infinitely often. From Lines 17-18, we can then deduce that the following situation appears infinitely often:s receives
an (ACCUSATION,ph) message from a processp at some timet with ph = Phases[s]

t. As the number message
initially in the link (p,s) is finite, we can then deduce thatp sends such messages infinitely often.

p sends ACCUSATION messages tos infinitely often only ifLeaderp = s ∧ Leaderp /∈ Activesp holds infinitely
often. Now,Leaderp is periodically set to a process inActivesp (Line 37). So, (1)s is inserted inActivesp, (2)
Leaderp is set tos, and (3)s removed fromActivesp infinitely often. By (1), Lemma 22, and the fact that the number
of messages initially in the link (s,p) is finite, we can deduce thatp receives infinitely often ALIVE messages sent bys.

p updatesActivesp by settingOtherActivesp to Collectp (Line 32). After eachActivesp’s update (Line 32):

- p sends an ACCUSATION message tos (Line 34) if Leaderp = s ∧ Leaderp /∈ Activesp (Line 33-35),

- p chooses a leader inActivesp (Line 37), and

- p resetsCollectp to ∅, andReceiveT imerp to 0 (Lines 41-42).

Then,p waits at least5⌈δ/α⌉ complete loop iterations,i.e., at least5δ times to make the nextActivesp’s update.
Consider now the timet from whichp only receives froms ALIVE messages that was effectively sent bys (such a

time exists because each message in transit in the link(s, p) is eventually received or lost). From timet, s is inserted into
Collectp each timep receives an ALIVE message sent bys. Asp receives an ALIVE message sent bys infinitely often,
p sends ACCUSATION messages tos only if the following situation appears infinitely often:p receives an ALIVE
message sent bys and, then, receives no ALIVE message froms during at least5δ times. By Lemma 26, two cases are
then possible for each (ALIVE,−,k) message sent bys to p at timet′ ≥ t:

(a) s sends another (ALIVE,−,k) message top during time interval]t′,t′ + δ + β].

(b) Phases[s] > k holds at timet′ + δ + β.

Let us now study the two following cases:

20

- There is a timeta ≥ t from which Case (a) is always verified,i.e., from ta, s sends (ALIVE,−,k) to p at most
everyδ + β times. Then, by Lemma 27, we can conclude thatp receives an ALIVE message froms at least every
2δ + 3β times. So,s is eventually inserted intoCollectp at least once during each period of5δ times and, as a
consequence,s ∈ Activesp eventually holds forever. Thus, we can conclude thatp eventually no more sends any
accusation tos and, so,Counters[s] is eventually no more incremented — a contradiction.

- Case (b) is verified infinitely often. Then, from timet, p must receive an ALIVE message sent bys and, then,
receive no message during at least5δ in order to send an ACCUSATION message tos. Consider any timetr ≥ t.
Assume that(i) p receives at timetr a messagem = (ALIVE,−,k) sent bys at timets < tr and(ii) p does not
receive any ALIVE message froms during the time interval]tr,tr + 5δ]. Then, by Lemma 27, ifs sends another
(ALIVE,−,k) message during]ts,ts + δ + β], p receives the message before timetr + 5δ — a contradiction.
So, Case (b) is verified and, asPhases[s] is monotically nondecreasing,Phases[s] > k holds forever from time
ts + δ + β. After receivingm, Phasep[s] is set tok. So, the ACCUSATION messagemA provoked bym is of the
following form: (ACCUSATION,k). Now, asmA is sent after timetr +5δ, Phases[s] > k holds whens receives
mA and, as a consequence,mA does not provoke any incrementation ofCounters[s]. Thus, as we considertr
as any value greater or equal tot, this means that eventually no ACCUSATION message receivedfrom p can
provoke any incrementation ofCounters[s] — a contradiction.

Hence, in any case,Counters[s] is incremented only a finite number of times — a contradiction. 2

Definition 6 For each processp, let cp be the largest value ofCounterp[p] in the execution that we consider (cp =∞
if Counterp[p] is unbounded). Letl be the process such that (cl,l) = min{(cp,p): p is an alive process}.

By Definition,l is an alive process. Furthermore, by Lemma 41cs <∞, so,cl <∞, i.e., Counterl[l] is bounded.

Lemma 29 Starting from any configuration, for every alive processp, if there is a time after whichl ∈ Activesp forever,
then there is a time after whichLeaderp = l forever.

Proof. Assume, by the contradiction, there is an alive processp that satisfiesLeaderp 6= l infinitely often despite
l ∈ Activesp eventually holds forever. Then, asLeaderp is periodically set to a process inActivesp (Line 37), this
means that there is a processq 6= l such thatq ∈ Activesp andLeaderp = q infinitely often. l ∈ Activesp eventually
holds forever implies thatp receives ALIVE messages froml infinitely often. As the number of ALIVE messages
initially in the link (l,p) is finite, p eventually only receives froml ALIVE messages thatl effectively sends, also, as
Counterl[l] is bounded and monotically nondecreasing (Observation 6),p eventually only receives ALIVE messages
from l of the form (ALIVE,cl) and, as a consequence,Counterp[l] = cl eventually holds forever. Consider now the two
following cases:

1. Counterq[q] is bounded. In this case,cq <∞ and, so, there is a timet whenCountert
q[q] = cq. By Lemma 24,

there is a time after whichCounterp[q] ≥ Countert
q[q] forever,i.e., Counterp[q] ≥ cq eventually holds forever.

Now, by definition ofl, we have (cl,l) < (cq,q). So, there is a time which (Counterp[l],l) < (Counterp[q],q)
forever, and from the way thatp periodically setsLeaderp (Line 37) — we obtain a contradiction.

2. Counterq[q] is unbounded. Then, by Lemma 24,Counterp[q] is also unbounded. So, there is a time which
(Counterp[l],l) < (Counterp[q],q) forever — we also obtain a contradition.

2

Lemma 30 Starting from any configuration, there is a time after whichLeaderl = l forever.

Proof. By definition,l ∈ Activesl (Line 8). So, the result follows from Lemma 29. 2

Corollary 6 Starting from any configuration, there is a time after whichPhasel[l] stops changing.

Proof. l changesPhasel[l] infinitely often only if l switchesLeaderl from l to a processq 6= l infinitely often (Lines
36-40). Hence, the result immediatly holds from Lemma 30. 2

Definition 7 Let lphase be the final value ofPhasel[l].

Note that sincePhasel[l] is monotically nondecreasing,lphase is also the largest value ofPhasel[l].

21

Lemma 31 Starting from any configuration, for every alive processp, there is a time after whichl ∈ Activesp forever.

Proof. Let p be any alive process. Ifp = l, then the lemma is trivially verified. Assume now thatp 6= l. By Lemma
30 and the definition oflphase, l sends (ALIVE,−,lphase) messages top infinitely often and these are the only type of
ALIVE message thatl sends top infinitely often. By Lemma 25,p receives (ALIVE,−,lphase) from l infinitely often.
Therefore, (*) there is a time after whichPhasep[l] = lphase holds forever. Moreover,p addsl to Activesp infinitely
often. We now show thatp removesl from Activesp only finitely often, and so the lemma holds. To that goal, assume,
by the contradiction, thatp removesl from Activesp infinitely often. Then,p sends (ACCUSATION,−) messages tol
infinitely often. By Lemma 25,l receives (ACCUSATION,−) messages fromp infinitely often. By (*), there is a time
after which the only (ACCUSATION,−) messages thatp sends tol are of the form (ACCUSATION,lphase). Thus,l
receives (ACCUSATION,lphase) messages fromp infinitely often andCounterl[l] is unbounded — a contradiction.2

By Lemmas 29 and 31, we have:

Lemma 32 Starting from any configuration, for every alive processp, there is a time after whichLeaderp = l forever.

Lemma 33 Starting from any configuration, there is a time after which only l sends messages.

Proof. There are only two types of messages in Algorithm 4: ALIVE andACCUSATION. By Lemmas 31 and 32,
the test of Line 33 is eventually no more satisfied by any aliveprocess. As a consequence, there is a time after which
no ACCUSATION message are sent. Consider now the ALIVE messages. From Line 25 of the algorithm, we know
that only the alive processesp that satisfyLeaderp = p infinitely often can send ALIVE messages infinitely often. By
Lemma 32, there is a time after which only one alive processp satisfyLeaderp = p infinitely often: Processl. Hence,
eventually only one process,l, sends messages (namely, ALIVE) and the lemma is proven. 2

Proof of Theorem 8. Immediate from Lemmas 32 and 33.2

E Pseudo-Stabilizing Leader Election inS1

Algorithm 5 implements a pseudo-stabilizing but non communication-efficient leader election in any systemS1. Below,
its correctness proof. Below, we notevart

p the value ofvarp at timet ands the timely source of the system.

Lemma 34 Starting from any configuration, for every alive processp and every processq such thatq 6= p: if q ∈
Alivesp holds infinitely often, thenp receives ALIVE messages fromq infinitely often.

Proof. Similar to the proof of Lemma 22, page 19. 2

Observation 10 For every processp, Counterp[p] is monotonically nondecreasing with time.

Lemma 35 Let p andq be two distinct processes. Starting from any configuration,if p receives ALIVE messages from
q infinitely often, thenq is alive and, for every timet, there is a time after whichCounterp[q] ≥ Countert

q[q] forever.

Proof. Similar to the proof of Lemma 23, page 19. 2

Lemma 36 Starting from any configuration, for every alive processp and every processq, if q ∈ Alivesp holds infinitely
often, thenq is alive and, for every timet, there is a time after whichCounterp[q] ≥ Countert

q[q] forever.

Proof. Similar to the proof of Lemma 24, page 19. 2

Lemma 37 Starting from any configuration, ifs (the source) sends ALIVE to another processp at timet, thens sends
another ALIVE message top during the time interval]t, t + δ + β].

Proof. Assume thats sends ALIVE to another processp at timet. Just after sending ALIVE top (Line 26),s resets its
timer SendT imers to 0 (Line 27) in the samerepeat foreverloop iteration. The program counter ofs then points out
to the first instruction of the loop at a timet′ such thatt < t′ ≤ t + β. Fromt′, s then executes a complete iteration of
the loop at most everyβ times. Now, fromt′, while SendT imers < ⌊δ/β⌋, SendT imers is incremented at each loop
iteration. So, the testSendT imers ≥ ⌊δ/β⌋ becomes true during the⌊δ/β⌋th loop iteration fromt′ and, then,s sends
ALIVE to p in the same loop iteration (Lines 24-28). Hence, fromt′, s sends ALIVE top in at most⌊δ/β⌋ × β times,
i.e., in at mostδ times. Ast′ ≤ t + β, the lemma is proven. 2

As all the output links ofs are timely, we can deduce the following:

22

Algorithm 5 Pseudo-Stabilizing Leader Election onS1

CODE FOR EACH PROCESSp:
1: variables:
2: Leaderp ∈ {1,...,n}
3: SendTimerp , ReceiveTimerp : non-negative integers
4: LocalLeaderp[1...n], LocalLeaderCounterp[1...n], Counterp[1...n]: arrays of non-negative integers /∗ to manage the accusations∗/
5: Collectp, OtherAlivesp : sets of non-negative integers /∗ these sets are used to compute theActivesp set∗/
6:
7: macros: /∗ these macros are just used to simplify the code∗/
8: Alivesp = OtherAlivesp ∪ {p}
9: MyLocalLeaderp = r such that (Counterp[r],r) = min{(Counterp[q],q) : q ∈ Alivesp}
10: MyLeaderp = l such that (LocalLeaderCounterp[l],LocalLeader[l]) = min{(LocalLeaderCounterp[q],LocalLeader[q]) : q ∈ Alivesp}
11:
12: repeat forever
13: for all q ∈ V \ {p} do
14: if receive(ACCUSATION) fromq then /∗ each timep receives an ACCUSATION,p increments its accusation counter∗/
15: Counterp[p]← Counterp[p] + 1
16: end if
17: if receive(ALIVE,r,rcnt,qcnt) from q then /∗ we also use the ALIVE messages to carry some informations∗/
18: Collectp ← Collectp ∪ {q}
19: Counterp[q]← qcnt
20: LocalLeaderp[q]← r
21: LocalLeaderCounterp[q]← rcnt
22: end if
23: end for
24: SendTimerp ← SendTimerp + 1
25: if SendTimerp ≥ ⌊δ/β⌋ then /∗ p periodically sends ALIVE to each other∗/
26: send(ALIVE,LocalLeaderp[p],Counterp[LocalLeaderp[p]],Counterp[p]) to every process exceptp
27: SendTimerp ← 0
28: end if
29: ReceiveTimerp ← ReceiveTimerp + 1
30: if ReceiveTimerp > 5⌈δ/α⌉ then
31: OtherAlivesp ← Collectp

32: for all q ∈ V \ Alivesp do /∗ p periodically accuses the processes it suspects∗/
33: send(ACCUSATION) toq
34: end for
35: LocalLeaderp[p]←MyLocalLeaderp /∗ p periodically evaluates its local leader∗/
36: LocalLeaderCounterp[p]← Counterp[LocalLeaderp[p]]
37: Leaderp ←MyLeaderp /∗ p periodically evaluates its global leader∗/
38: Collectp ← ∅
39: ReceiveTimerp ← 0
40: end if
41: end repeat

Observation 11 If s sendsm to a processp 6= s at timet, thenm is delivered top from s at most at timet + δ.

Assume that a messagem is delivered to a processp. Then,p receives a message of the same type ofm at most one
complete iteration of itsrepeat foreverloop after the delivrance ofm. Hence, by Observations 1 (page 13) and 11,
follows:

Lemma 38 Starting from any configuration, ifs sends ALIVE to another processp at timet, thenp receives at least
one ALIVE message froms during the time interval]t, t + δ + 2β].

Lemma 39 Starting from any configuration, for every alive processp 6= s, p receives ALIVE messages froms at least
every2δ + 3β times.

Proof. Starting from any configuration, the program counter ofs points out to the first instruction of itsrepeat
forever loop at a timet such thatt ≤ β. From t, s then executes a complete iteration of the loop at most everyβ
times and, whileSendT imers < ⌊δ/β⌋, SendT imers is incremented at each loop iteration. So, asSendT imers is a
non-negative integer, the testSendT imers ≥ ⌊δ/β⌋ becomes true at the lattest during the⌊δ/β⌋th loop iteration from
t and, then,s sends ALIVE top in the same loop iteration (Lines 24-28). Hence, from the initial configuration,s sends
ALIVE to p at most at timet + ⌊δ/β⌋ × β, i.e., at most at timeδ + β. After this sending,s periodically sends ALIVE
messages top within periods of at mostδ + β times, by Lemma 37. Hence, starting from any configuration,s sends
ALIVE messages top at most everyδ + β times and, by Lemma 38, the lemma holds. 2

Lemma 40 For every alive processp, there is a time after whichs ∈ Alivesp forever.

Proof. First, the lemma trivially holds forp = s. Consider now the case wherep 6= s. There is a time after which
s ∈ Alivesp forever if and only if there is a time after whichs ∈ OtherAlivesp forever. By Lines 29-40, we know that
OtherAlivesp is periodically reset toCollectp and, after that,Collectp is reset to∅. After such resets,p waits5⌈δ/α⌉
complete iterations of itsrepeat foreverloop before executingOtherAlivesp ← Collectp again. As each loop iteration
is executed in at leastα times, this means thatp waits at least5δ times before executingOtherAlivesp ← Collectp

23

again. During this period,p receives at least one ALIVE message froms by Lemma 39. So, during this period,p inserts
s in Collectp (Lines 17-18). Hence, whenp executesOtherAlivesp ← Collectp again,s ∈ Collectp. 2

Lemma 41 Counters[s] is bounded.

Proof. Assume, by the contradiction, thatCounters[s] increases infinitely often. So,s receives ACCUSATION
messages infinitely often (Lines 14-16). As the number of messages initially in the links is finite, there is at least one
alive processp 6= s that accusess infinitely often. Now,p only sends ACCUSATION messages to processesq such that
q ∈ V \Alivesp (Lines 32-34) ands ∈ Alivesp eventually holds forever by Lemma 40 — a contradiction. 2

Definition 8 For each processp, let cp be the largest value ofCounterp[p] in the execution that we consider (cp =∞
if Counterp[p] is unbounded). Letl be the process such that (cl,l) = min{(cp,p): p is an alive process}.

By Definition,l is an alive process. Furthermore, by Lemma 41,cs <∞, so,cl <∞, i.e., Counterl[l] is bounded.

Lemma 42 Letp andq be two alive processes. Starting from any configuration, thetwo following propositions holds:

(a) if q ∈ Alivesp infinitely often andcq <∞, then there is a time after whichCounterp[q] = cq forever.

(b) if q ∈ Alivesp infinitely often andcq =∞, then there is a time after whichCounterp[q] > cl forever.

Proof. First, if p = q, then (a) holds becauseCounterq[q] is monotically nondecreasing by Observation 10. Then, if
p = q, then (b) holds becauseCounterq[q] is monotically nondecreasing andcl is bounded (by definition).

Consider now the case wherep 6= q. In the two cases (a) and (b),p receives ALIVE fromq infinitely often by
Lemma 34.

(a) Assume now thatcq < ∞. In this case,Counterq[q] is bounded and monotically nondecreasing (Observation
10). So, there is a timet after whichCounterq[q] = cq forever. Then, as every message in the link(q,p) is
eventually received or lost, there is a timet′ > t after whichp only receives fromq ALIVE messages that have
been sent byq after timet and all these messages are of the following form: (ALIVE,−,−,cq). Now, each timep
receives such an (ALIVE,−,−,cq) message,p setsCounterp[q] to cq (Lines 17-22) and, this is the only way that
p can updateCounterp[q]. Hence, there is a time after whichCounterp[q] = cq forever.

(b) Assume thatcq = ∞. In this case,Counterq[q] is unbounded. Then, we already know thatCounterl[l] is
bounded. So, there is a time after whichCounterq[q] > Counterl[l] forever (remember thatCounterq[q] and
Counterl[l] are monotically nondecreasing by Observation 10). Therefore, by Lemma 36, there is a time after
whichCounterp[q] ≥ Counterq[q] > Counterl[l] forever. Now,Counterl[l] is eventually equals tocl forever
becauseCounterl[l] is monotically nondecreasing. Hence, there is a time after whichCounterp[q] > cl forever.

2

As LocalLeaderp[p] is periodically set to a processq such thatq ∈ Alivesp, we have the following corollary:

Corollary 7 Letp andq be two alive processes. Starting from any configuration, thetwo following propositions holds:

(a) if LocalLeaderp[p] = q infinitely often andcq <∞, then there is a time after whichCounterp[q] = cq forever.

(b) if LocalLeaderp[p] = q infinitely often andcq =∞, then there is a time after whichCounterp[q] > cl forever.

Lemma 43 Let p be an alive process. Letq be a process. Assume thatq ∈ Alivesp andLocalLeaderp[q] = r holds
infinitely often. The two following propositions hold:

(a) There is a time after which (LocalLeaderp[q] = r)⇒ (LocalLeaderCounterp[q] = cr) holds each timep sets
Leaderp to MyLeaderp, if cr <∞,.

(b) There is a time after which (LocalLeaderp[q] = r) ⇒ (LocalLeaderCounterp[q] > cl) holds each timep sets
Leaderp to MyLeaderp, if cr =∞.

Proof. Assume thatq = p. Then, by Corollary 7, there is a time after which:

- Counterp[r] = cr forever, if cr <∞

- Counterp[r] > cl forever, if cr =∞

24

So, the lemma holds becausep periodically executes the following sequence:p updatesLocalLeaderp[p], resets
LocalLeaderCounterp[p] to Counterp[LocalLeaderp[p]], and then setsLeaderp to MyLeaderp (Lines 35-37).

Consider now the case whereq 6= p. Then, by Lemmas 34 and 35,p receives ALIVE messages fromq infinitely
often andq is alive. As the number of messages initially in the link(q,p) is finite, p eventually only receives fromq
ALIVE messages sent byq. Each ALIVE message sent byq at timet is of the following form: (ALIVE,v,vcnt,qcnt)
wherev is the value ofLocalLeaderq[q] at timet andvcnt is the value ofCounterq[LocalLeaderq[q]] at timet. When
receiving such a message,p setsLocalLeaderp[q] to v andLocalLeaderCounterp[q] to vcnt in sequel (Lines 20-21).
Moreover, this is the only way to modifyLocalLeaderp[q] andLocalLeaderCounterp[q]. Thus,LocalLeaderp[q] = r
holds infinitely often implies thatLocalLeaderq[q] = r holds infinitely often and, by Corollary 7:

- if cr <∞, thenCounterq[r] = cr eventually holds forever.

- if cr =∞, thenCounterq[r] > cl eventually holds forever.

So, ifcr <∞, thenp eventually only receives fromq (ALIVE,v,vcnt,qcnt) messages that satisfy the condition (v =
r) ⇒ (vcnt = cr). At each reception of such messages,p setsLocalLeaderp[q] to r andLocalLeaderCounterp[q]
to cr in sequel. So, eventually each timep setsLeaderp to MyLeaderp, we haveLocalLeaderCounterp[q] = cr, if
LocalLeaderp[q] = r and Part (a) of the lemma is proven.

Finally, if cr =∞, thenp eventually only receives fromq (ALIVE,v,vcnt,qcnt) messages that satisfy the condition
(v = r)⇒ (vcnt > cl). At each reception of such messages,p setsLocalLeaderp[q] tor andLocalLeaderCounterp[q]
to cr in sequel. So, eventually each timep setsLeaderp to MyLeaderp, we haveLocalLeaderCounterp[q] > cl, if
LocalLeaderp[q] = r and Part (b) of the lemma is proven. 2

Lemma 44 Starting from any configuration, for every alive processp, if there is a time after whichl ∈ Alivesp forever,
then there is a time after whichLocalLeaderp[p] = l forever.

Proof. Let p be any alive process. Assume, by the contradiction, that there is a time after whichl ∈ Alivesp forever
but LocalLeaderp[p] 6= l holds infinitely often. Then, by Lemma 42, there is a time after which Counterp[l] = cl

forever (cl <∞). Also, there is a processq such thatLocalLeaderp[p] = q infinitely often and two cases are possible:

(1) cq <∞. In this case, there is a time after whichCounterp[q] = cq forever by Corollary 7. Now, asCounterp[l]
= cl eventually holds forever, there is a time after which (Counterp[l],l) < (Counterp[q],q) forever. Hence, there
is a time after whichLocalLeaderp[p] 6= q forever — a contradiction.

(2) cq =∞. In this case, there is a time after whichCounterp[q] > cl forever by Corollary 7. Now, asCounterp[l] =
cl eventually holds forever, there is a time after which (Counterp[l],l) < (Counterp[q],q) forever. Hence, there
is a time after whichLocalLeaderp[p] 6= q forever — a contradiction.

2

Definition 9 LetLocalLeaders(p) = {LocalLeaderp[q] : q ∈ Alivesp}.

Lemma 45 Starting from any configuration, for every alive processp, if there is a time after whichl ∈ LocalLea-
ders(p) forever, then there is a time after whichLeaderp = l forever.

Proof. Assume that there is a time after whichl ∈ LocalLeaders(p) forever. Then, asl ∈ LocalLeaders(p) holds
infinitely often andLocalLeaders(p) = {LocalLeaderp[q] : q ∈ Alivesp}, there is a subset of processesV ′ such that:

1. ∀q ∈ V ′, q ∈ Alivesp andLocalLeaderp[q] = l holds infinitely often.

Also, as there is a timet after whichl ∈ LocalLeaders(p) forever, we have the following additionnal property:

2. ∀t′ ≥ t, ∃qt′ ∈ V ′ such thatqt′ ∈ Alivesp andLocalLeaderp[qt′] = l at timet′.

By 1. and Lemma 43, there is a time after which∀q ∈ V ′, (LocalLeaderp[q] = l)⇒ (LocalLeaderCounterp[q] =
cl)) each timep setsLeaderp to MyLeaderp. Then, by 2., there is a timet such that ifp setsLeaderp to MyLeaderp

at a timet′ ≥ t, then there exists a processqt′ ∈ V ′ such thatLocalLeaderp[qt′] = l andLocalLeaderCounterp[qt′]
= cl at timet′.

Assume now, by the contradiction, thatLeaderp 6= l infinitely often. Then, asLeaderp is periodically set toMy-
Leaderp (Line 37), the following situation appears infinitely often: p setsLeaderp toMyLeaderp while there exists two
processesv andr such thatv ∈ Alivesp, LocalLeaderp[v] = r, and (LocalLeaderCounterp[v],LocalLeaderp[v]) <
(cl,l). Two case are then possible:

25

- cr <∞. Then, there is a time after which the condition (LocalLeaderp[v] = r)⇒ (LocalLeaderCounterp[v] =
cr) holds each timep setsLeaderp to MyLeaderp, by Part (a) of Lemma 43. Now, by Definition (cr,r) > (cl,l).
So, (LocalLeaderCounterp[v],LocalLeaderp[v]) > (cl,l) eventually holds each timep setsLeaderp to My-
Leaderp while v ∈ Alivesp andLocalLeaderp[v] = r — a contradiction.

- cr =∞. Then, there is a time after which the condition (LocalLeaderp[v] = r)⇒ (LocalLeaderCounterp[v] >
cl) holds each timep setsLeaderp to MyLeaderp, by Part (b) of Lemma 43. So, (LocalLeaderCounterp[v],Lo-
calLeaderp[v]) > (cl,l) eventually holds each timep setsLeaderp to MyLeaderp while v ∈ Alivesp and
LocalLeaderp[v] = r — a contradiction.

2

We now proceed to show that for every alive processp there is a time after whichl ∈ LocalLeaders(p).

Lemma 46 Starting from any configuration, there is a time after whichl ∈ Alivess forever.

Proof. If l = s, then the lemma trivially holds. Assume now thatl 6= s. There are three possible cases: (1) there is
a time after whichl ∈ Alivess forever, (2)l is added and removed fromAlivess infinitely often, or (3) there is a time
after whichl /∈ Alivess forever. We now show that Cases (2) and (3) cannot occur.

In case (2),l is removed fromAlivess each timel was isAlivess but not inCollects ands setsOtherAlivess

to Collects (Line 31). In this case,s sends an ACCUSATION message tol (Line 32-34). So,s sends ACCUSATION
messages tol infinitely often.

In case (3), as there is a time after whichl /∈ Alivess forever and ass periodically sends ACCUSATION messages
to every processq such thatq ∈ V \Alivess, s sends ACCUSATION messages tol infinitely often.

So, in both Cases (2) and (3),s sends ACCUSATION messages tol infinitely often. Now, since the output links
of s are timely andl tries to receives ACCUSATION messages froms infinitely often (exactly once byrepeat forever
loop iteration),l receives ACCUSATION messages froms infinitely often. Thus,l incrementsCounterl[l] infinitely
often and, asCounterl[l] is monotonically nondecreasing (Observation 10),Counterl[l] unbounded — a contradiction.
Hence, only Case (1) is possible. 2

Lemma 47 Starting from any configuration, there is a time after whichLocalLeaders[s] = l forever.

Proof. Immediate from Lemmas 44 and 46. 2

Lemma 48 Starting from any configuration, for every alive processp, LocalLeaderp[s] = l eventually holds forever.

Proof. Let p be an alive process. Ifp = s, then the result is immediate from Lemma 47. Assume now thatp 6= s. In
this case,p receives ALIVE messages froms infinitely often by Lemma 39. By Lemma 47, there is a timet after which
LocalLeaders[s] = l. So, after timet, all the ALIVE messages thats sends top are of the form (ALIVE,l,−,−). Thus,
there is a time after which all the ALIVE messages thatp receives froms are of the form (ALIVE,l,−,−). So, there is a
time after whichLocalLeaderp[s] = l forever. 2

Corollary 8 Starting from any configuration, each alive processp eventually satisfiesl ∈ LocalLeaders(p) forever.

Proof. Immediate from Lemmas 40, 48, and Definition 9. 2

Lemma 49 Starting from any configuration, for every alive processp, there is a time after whichLeaderp = l forever.

Proof. Immediate from Corollary 8 and Lemma 45. 2

Theorem 10 Algorithm 5 implements a pseudo-stabilizing leader election in SystemS1.

Proof. Immediate from Lemma 49 and the fact thatl is alive. 2

26

