N

N
N

HAL

open science

Robust Stabilizing Leader Election

Carole Delporte-Gallet, Stéphane Devismes, Hugues Fauconnier

» To cite this version:

Carole Delporte-Gallet, Stéphane Devismes, Hugues Fauconnier. Robust Stabilizing Leader Election.

2007. hal-00167935

HAL Id: hal-00167935
https://hal.science/hal-00167935

Preprint submitted on 23 Aug 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00167935
https://hal.archives-ouvertes.fr

Robust Stabilizing Leader Election

Carole Delporte-Gallét Stéphane Devismés Hugues Fauconniér

August 23, 2007

Abstract

In this paper, we mix two well-known approaches of the faalerance:robustnesandstabilization Robustness
is the aptitude of an algorithm to withstand permanent fag8usuch as process crashes. The stabilization is a general
technique to design algorithms tolerating transient fadu Using these two approaches, we propose algorithms that
tolerate both transient and crash failures. We study tw@mnstof stabilization: the self- and the pseudo- stabilarat
(pseudo-stabilization is weaker than self-stabilizgtiole focus on the leader election problem. The goal here is to
show the implementability of the robust self- and/or psewstabilizing leader election in various systems with weak
reliability and synchrony assumptions. We try to proposieemit is possiblecommunication-efficieninplementations.
In this work, we exhibit some assumptions required to obtabust stabilizing leader election algorithms. Our result
show, in particular, that the gap between robustness abdizsitag robustness is not really significant when we coasid
fix-point problems such as leader election.

Keywords: Distributed systems, self-stabilization, pseudo-sizdtilon, robust algorithm, leader election.

LLIAFA, Université D. Diderot, 2 Place Jussieu, 75251, P&edex 05, Francécd,hf} @liafa.jussieu.fr
’LaRIA, CNRS FRE 2733, Université de Picardie Jules VerS8au@ Saint Leu, 80000 Amiens, France, stephane.devismei@die. fr

1 Introduction

The quality of a modern distributed system mainly dependgstolerance to the various kinds of faults that it may
undergo. Two major kinds of faults are usually considereth@nliterature: thdransientandcrashfailures. Thesta-
bilization introduced by Dijkstra in 1974 [12] is a general techniquelésign algorithms tolerating transient failures.
In addition to the transient failures tolerance, the sizhfion is highly desirable because, in many cases, staigli
algorithms naturally (or with some minor modifications) mgtand the dynamic topological changes. Finally, the ini-
tialization phase is not required in a stabilizing alganthHence, stabilization is very interesting in dynamic and/
large-scale environments such as sensor networks andg@eeer systems. However, such stabilizing algorithms are
usually notrobust they do not withstand crash failures. Conversetjustalgorithms are usually not designed to
go through transient failuresi (b, some robust algorithme.g, [3], tolerate the loss of messages which is a kind of
transient failures). Actually, there is a few number of papbat deals with both stabilization and crash failueeg,

[14, 6, 20, 7, 9, 17, 16]. In [14], Gopal and Perry provide agoathm that transforms fault-tolerant protocols into
fault-tolerant self-stabilizing versions assuming a $ywaous network. In [6], authors prove tHault-tolerant self-
stabilizationcannnot be achieve in asynchronous networks.

Here, we are interested in designing leader election atyos that both tolerate transient and crash failures. Actu-
ally, we focus on finding stabilizing solutions in the messpgssing model with the possibility of some process crashes
The impossibility result of Aguilerat al ([4]) for robust leader election in asynchronous systenmstraints us to make
some assumptions on the link synchrony. So, we are lookinthéoweakest assumptions allowing to obtain stabilizing
leader election algorithm in a system where some procesag&rash.

Leader election has been extensively studied in robuststalnitizing systemse(g. [2, 3]). In particular, it is also
considered as a failure detector: eventually all alive psses agree on a common leader which is not crashed. Such
a failure detector (calle) is important because it has been shown in [11] that it is thakest failure detector with
which one can solve the consensus.

The notion of stabilization appears in the literature with tvell-known concept aelf-stabilization a self-stabili-
zing algorithm regardless of the initial configuration of the system, gunéges that the system reaches in a finite time a
configuration from which itannotdeviate from its intended behavior. In [10], Buretsal introduced the more general
notion of pseudo-stabilization A pseudo-stabilizing algorithm, regardless of the initianfiguration of the system,
guarantees that the system reaches in a finite time a corfigufeom which it does notdeviate from its intended
behavior. These two notions guarantee the convergence toract behavior. However, the self-stabilization also
guarantees that since the system recovdegi@imateconfiguration {.e., a configuration from which the specification
of the problem to solve is verified), it remains inegitimateconfiguration forever (thelosureproperty). In contrast, a
pseudo-stabilizing algorithm just guaranteesu#timate closure the system can move fromlegitimateconfiguration
to anillegitimateone but eventually it remains inlegitimateconfiguration forever. There is some stabilizing non-rabus
leader election algorithms in the literatueeg, [13, 8.

We study the problem of implementing robust self- and/ompee stabilizing leader election in various systems
with weak reliability and synchrony assumptions. We try togose, when it is possibl&ommunication-efficient
implementations: an algorithm c@mmunication-efficieritit eventually only uses — 1 unidirectionnal links (where
is the number of processes), which is optimal [18]. Commatima-efficiency is quite challenging in the stabilizingar
because stabilizing implementations often require theofibeartbeats which are heavy in terms of communication. In
this paper, we first show that the notions of immediate symwhand eventually synchrony are “equivalent” in (pseudo-
or self-) stabilization in a sense that every algorithm WhHgstabilizing in a systen§ is also stabilizing in the system
S’ whereS’ is the same system a@sexcept that all the synchronous links$hare eventually synchronous &f, and
reciprocally. Hence, we only consider synchrony propsrtieat are immediate. In the systems we study: (1) all the
processes are synchronous and can communicate with eaatbottsome of them may crash and, (2) some links may
have some synchrony or reliability properties. Our starpoint is a full synchronous system notg¢l We show that a
self-stabilizing leader election can be communicatidicieitly done in such a system. We then show that such strong
synchrony assumptions are required in the systems we @micbbtain a self-stabilizing communication-efficient
leader election. Nevertheless, we also show that a sdifliziag leader election that is not communication-effidie
can be obtained in a weaker system: any sysfgmhere there exists at least one path of synchronous linksdeset
each pair of alive processes. In addition, we show that waaamplement any self-stabilizing leader election withou
these assumptions. Hence, we then consider the pseudlizatain. We show that communication-efficient pseudo-
stabilizing leader election can be done in some weak modaissystem havingtimely bi-sourcé (S,) and any system
having atimely sourcé& andfair links (S,). Using a previous result of Aguilee al ([3]), we recall that communication-
efficiency cannot be done if we consider now systems havitepatone timely sourceut where thdairnessof all the
links is not required &;). However, we show that a non-communication-efficient gsestabilizing solution can be

1Roughly speaking, a timely bi-source is a synchronous ®baving all its links that are synchronous.
2Roughly speaking, a timely source is a synchronous proaagadnall its output links that are synchronous.

85 84 53 52 51 SO

Communication-Efficient Self-Stabilization Yes | No No No No | No
Self-Stabilization Yes | Yes | Yes | No No | No
Communication-Efficient Pseudo-Stabilizatign Yes | Yes ? Yes | No | No
Pseudo-Stabilization Yes | Yes | Yes | Yes | Yes | No

Table 1: Implementability of the robust stabilizing leaeéction.

implemented in such systems. Finally, we conclude with tedsystem where all links can be asynchronous and lossy
(So): itis clear that the leader election can be neither psendoself- stabilized in such a system. Table 1 summarizes
our results.

[System || Properties | /@\
So Links arbitrary slow, lossy, and initially not necessary empty
Processescan be initially crashed, timely forever otherwise
Variables initially arbitrary assigned
S1 So with at least ongimely source
So So with at least ongimely sourceand every link isfair @ @
S3 So with atimely routing overlay
S4 So with at least on¢imely bi-source \
S5 So except that all links arémely ©)

Figure 1: Systems considered in this paggr¢ S’ meansS is weaker thars’).

It is important to note that the solutions we propose arergigly adapted from previous existing robust algorithms
provided, in particular, in [2, 3]. Actually, the motivaticof the paper is not to propose new algorithms. Our goal is
merely to show some required assumptions to obtain selfseugo- stabilizing leader election algorithms in systems
where some processes may crash. In particular, we focusdyotiderline assumptions where we go from the possibility
to have self-stabilization to the possibility to have psegthbilization only. Another interesting aspect of adéipg
previous existing robust algorithms is to show that, forgbint problems such as leader election, the gap between
robustness and stabilizing robustness is not really s@amift in such problems, adding the stabilizing propertyugey
easy. Of course, adding a stabilizing property to robustritlgms allow to obtain algorithms that tolerate more types
failures: for example, the duplication and/or corruptidrsome messages.

Paper Outlines. Inthe following section, we present an informal model for systems. We then consider the problem
of the robust stabilizing leader election in various kinflsystems (Sections 3 to 10). Finally, we summarize our tesul
and give some concluding remarks in Section 11.

2 Preliminaries

2.1 Distributed Systems

A distributedsystemis an aggregation of interconnected computing entitiekedgrocesses We consider here dis-
tributed systems where each process can communicate withaher throughdirected links in the communication
network there is a directed link from each process to all the othéfs.denote the communication network by the di-
graphG = (V, E) whereV = {1,...n} is the set ol processes{ > 1) andE the set of directed links. A collection of
distributedalgorithmsrun on the system. These algorithms can be seen as autoraa¢aétble processes to coordinate
their activities and to share some resources. We modelkzedrcution®f a distributedalgorithm A in the systens by
the pair C,—) whereC is the set of configurations amé is a collection of binary transition relations 6nsuch that for
each transitiony;_; — ~; we havey;_; # ~;. A configuration consists in the state of each process anddiection

of messages in transit at a given time. The state of a prosekfined by the values of its variables. &xecutiorof A

is amaximalsequence = vo,70,71,71,- - - vYi—1,Ti—1,Yi»- - - SUCh that/i > 1, v;_1 — ~; and the transition;_1 — ~;
occurs after time elapsg_, time units ¢;_; € R andr;,_; > 0). For each configuration in any executiore, we
denote bye- the suffix ofe starting iny, &, denotes the associated prefie(e = &, e.). Finally, we callspecification

a particular set of executions.

2.2 Self- and Pseudo- Stabilization

Formally, the self-stabilization can be defined as follows:

Definition 1 (Self-Stabilization [12]) An algorithm A is self-stabilizingfor a specificationF in the systens if and
only if in any execution ofl in S, there exists a configurationsuch that any suffix starting fromis in F.

Pseudo-stabilization is weaker than self-stabilizatioraisense that any self-stabilizing algorithm is also a pseud
stabilizing algorithm but the converse is not necessasy. tRiormally, the pseudo-stabilization can be defined as\visli

Definition 2 (Pseudo-Stabilization [10]) An algorithm A is pseudo-stabilizinfpr a specificationF in the systens if
and only if in any execution 04 in S, there exists a suffix that is iA.

Self- versus Pseudo- Stabilization (from [10]). An algorithm.4 is self-stabilizing for the specificatiafi in the sys-
tems if and only if starting from any arbitrary configuratiod, guarantees tha reaches in a finite time a configuration
from which F cannot beviolated. In contrastA is pseudo-stabilizing fofF in S if and only if starting from any ar-
bitrary configuration,4 guarantees tha reaches in a finite time a configuration from whi#his notviolated. Thus,

the only distinction between these two definitions comesrttmthe difference betweeréannot béand "is not’. This
difference may seem to be weak but actually is fondamentdhd case of self-stabilization, we have the guarantee that
the system eventually reaches a configuration from whichevéation fromF is possible. We have not such a guarantee
with the pseudo-stabilization, we just know that the systéesmtually no more deviate frorh.

-l

O O

(a) (b)
Figure 2: Self- and Pseudo-Stabilizing Algorithms.

Figure 2 illustrates the difference between these two ptegse Consider the algorithm described by the state-
transition diagram shown in Figure 2.(a) (in this diagrairgles represent configurations and oriented edges repirese
possible transitions). Starting from any configuratiore, #igorithm guarantees that the system reaches in at most one
transition either the configuratianor the configuratiory. Fromi (resp. j), only the executioni(z,...) (resp. {,j,...))
can be done. Thus, if the intended specification of the systetime set of executiong = {(i,i,...), (j,j,...)}, then
the system reaches within one transition a configuratiar () from which no deviation fron¥F is possible. Hence,
the algorithm is self-stabilizing fofF. Consider now the second algorithm provided in Figure 2afi assume that
the intended specification is stif. The algorithm is not self-stabilizing because startiranft, it does not guarantee
that the system will eventually leave now, ini the system can deviate frotf if the algorithm executesi(,j,...)
which is not inF. On the other hand, every execution of the algorithm in tretesy is one of the following:ifi,...),
(4,...4,7.4,---), Of (j,4,...). Thus, every execution has an infinite suffixAn In other words, along every execution the
algorithm guarantees that the system eventually reachesfgyaration from which it does not deviate fraffy i.e., the
algorithm is pseudo-stabilizing foF.

Robust Stabilization. Stabilization is a well-known technique allowing to desmgorithms that tolerat&ransient
failures Roughly speaking, a transient failure is a temporary failef some components of the system that can perturb
its configuration. For instance, a transient failure canseaihe corruption of some bits into some process memories
or messages, as well as, the loss or the duplication of sorseages. Actually, stabilizing algorithms withstand the
transient failures because, after such failures, the systn be in an arbitrary configuration and, in this case, a sta-
bilizing algorithn? guarantees that the system will recover a correct behaviarfinite time and without any external
intervention if no transient failure appears during thisieergence. To show the stabilization, we observe the system
from the first configuration after the end of the last transfaiture (yet considered abe initial configurationof sys-
tem) and we assume that no more failure will occur. Actudilye prove that from such a configuration and with such
assumptions, an algorithm guarantees that the systemeexaworrect behavior in a finite time, this means that this
algorithm guarantees that the system will recover if theetibetween two periods of transient failures is sufficiently
large. Henceforth, such an algorithm can be consideredestimg transient failures.

In this paper, we not only consider the transient failurest gystems may go through transient as well as crash
failures. Hence, our approach differs from the classicprapch above presented. Here, we assume that some processes
may be crashed in the initial configuration. We also assumghie links are not necessary reliable during the execution

3n.b, in stabilization, its is usually assumed that the trarisigitures do not affect the code of the algorithms.

In the following, we will show that despite these constrgjiitis possible (under some assumptions) to design (self- o
pseudo-) stabilizing algorithms. Note that the fact thataméy consider initial crashes is not a restriction (but eath
an assumption to simplify the proofs) because we focus oretider election which is a fix-point problem: in such
problems, the safety properties do not concern the wholeugie but only a suffix.

2.3 Informal Model

Processes. Processes execute by taking steps. In a step a processeseeoiactions in sequence: (1) either it tries to
receive one message from another process, or sends a massagéher process, or does nothing, and then (2) changes
its state. A step need not to be instantaneous, but we askatresaich action of a step takes effect at some instantaneous
moment during the step. The configuration of the system atmegch time some steps take effect: if there is some steps
that take effect at time;, then the system moves from a configuratign; to another configuration; (v;—1 — ;)
where~;_; was the configuration of the system during some time intdtyal , ¢;[and~; is the configuration obtained

by applying ony;_; all actions of the steps that take effect at tithe

A process can fail by permanently crashing, in which casefindtively stops to take steps. A processls/e at
time tif it is not crashed at timé Here, we consider that all processes that are alive in ilialinonfiguration are alive
forever. An alive process executes infinitely many stepsc@vesider that any subset of processes may be crashed in the
initial configuration.

We assume that the execution rate of any process cannoasehedefinitively. Hence, there exists a non-null lower
bound on the time required by the alive processes to execsiiefa Moreover, every alive process is assumed to be
timely, i.e,, it satisfies a non-null upper bound on the time it requiresxecute each step. Finally, our algorithms are
structured as eepeat forevetoop and we assume that each process can only execute a ldownrdber of steps in each
loop iteration. Hence, each alive process satisfies a longtaa upper bound, respectively noteénd3, on the time
it requires to execute an iteration of repeat forevetoop. We assume thatands are known by each process.

Links. Processes can send messages over a set of directed links.iJhadirected link from each process to all the
others. A messagm carries atypeT in addition to itsdataD: m= (T',D) € {0,1}* x {0,1}*. For each incoming
link (¢,p) and each typ&’, the procesp has a message buff@uffer,[¢, T, that can hold at most orgnglemessage
of typeT'. Buffer,[q,T] =L when it holds no message. dfsends a messageto p and the link(q,p) does not lose
m, thenBuffer,[q,T] is eventually set tan. When it happens, we say thaessage m is delivered to p fron{rgb.,
we make no assumption on the delivrance orderBulffer,[q,7"] was set to some previous message, this message is
then overwritten. Whep takes a step, it may choose a procgssid a typel” to read the contents @uffer,[q,T]. If
Buffer,[q,T] contains a message (i.e., Buffer,[q,T] #1), then we say thgh receives m from gndBuffer,[q,T]
is automatically reset ta . Otherwisep does not receive any message in this step. In either pasay change its state
to reflect the outcome. Note that even if a messagd typeT is delivered tg from ¢, there is no guarantee thatill
eventually receiven. First, it is possible thap never chooses to che&uffer,[q,1]. Second, it is also possible that
Buffer,[q,T] is overwritten by a subsequent message froofitype T beforep checksBuffer,[q,T] (however, in this
casep receivessomemessage of typ& from ¢, but this is nom).

Alink (p,q) istimelyif there exists a constahtsuch that, for every execution and every timeach message sent
to ¢ by p at timet is delivered tag from p within time ¢ 4+ ¢ (any message that is initially in a timely link is delivered
within time). A link (p,q) is eventually timelyf there exists a constaatfor which every execution satisfies: there is
a timet such that every messagethatp sends ta; at timet’ > ¢ is delivered ta; from p by timet’ + 6 (any message
that is already in an eventually timely link at timés delivered within timeg + §). We assume that every process knows
0. We also assume that> 3. A link which is neither timely nor eventually timely can beb#rary slow, or can lose
messages. Aair link (p,q) satisfies: for each type of messdfeif p sends infinitely many messages of typfeo g,
then infinitely many messages of typeare delivered tg from p. Alink (p,q) is reliableif every message sent yto
q is eventually delivered tg from p.

Particular Caracteristics. A timely sourcgresp. areventually timely sourgg3] is an alive procesg having all its
output linksthat aretimely (resp.eventually timely. A timely bi-sourcgresp. areventually timely bi-sourgd5] is an
alive proces® having all its (input and outputinks that aretimely (resp. eventually timely. We calltimely routing
overlay(resp.eventually timely routing overlgyany strongly connected graghl = (V',E’) whereV”’ is the subset of
all alive processes ankl’ a subset ofimely (resp.eventually timelylinks.
Finally, note that the notions tifnelinessandeventually timelinesare “equivalent” in (pseudo- or self-) stabilization

in a sense that every stabilizing algorithm in a syst®maving some timely links is also stabilizing in the syst&m
whereS’ is the same system dsexcept that all the timely links i§ are eventually timely i§’, and reciprocally (see

4Except for the first step that we allow to not satisfy this loweund.

Theorems 1 and 2). Indeed, the finite period where the eviintimely links are asynchronous can be seen as a period
of transient faults. Now, any stabilizing algorithm guares the convergence to a correct behavior after such adperio

Theorem 1 LetS be a system having some timely links. Eebe the same system &sxcept that all the timely links
in S are eventually timely i5’. An algorithmA is pseudo-stabilizing for the specificatignin the systens if and only
if A is pseudo-stabilizing for the specificatighin the systend’.

Proof.

- If. By definition, a timely link is also an eventually timely linklence, we trivially have: if4 is pseudo-stabilizing
for Fin &', thenA is also pseudo-stabilizing foF in S.

- Only If. Assume, by the contradiction, thatis pseudo-stabilizing fof in S but not pseudo-stabilizing foF
in S’. Then, there exists an executief A in S’ such that no suffix of is in F. Let~ be the configuration of
e from which all the eventually timely links a$’ are timely. As no suffix ot is in F, no suffix ofa’ (the suffix
of e starting from) is in F too. Now,a’ is a possible execution od in S because (1) is a possible initial
configuration ofS (S andS’ have the same set of configurations and any configuratiah cdn be an initial
configuration) and (2) every eventually timely link &f is timely ine.. Hence, as no suffix aof; is in F, A is
not pseudo-stabilizing faF in S — a contradiction.

Following a proof similar to the one of Theorem 1, we have:

Theorem 2 LetS be a system having some timely links. Eebe the same system &sxcept that all the timely links
in S are eventually timely i5’. An algorithm.A is self-stabilizing for the specificatiaf in the systens if and only if
A is self-stabilizing for the specificatiafi in the systend’.

Communication-Efficiency. We said that an algorithm isommunication-efficieig] if there is a time from which it
uses onlyn — 1 unidirectional links.

Systems. We consider here six systems denotedSy: € [0...5]. All these systems satisfy: (1) the value of the
variables of every alive process can be arbitrary in theéahttonfiguration, (2) every link can initially contain a fiai
but unbounded number of messages, and (3) except if we éipbtate, each link between two alive processes is
neither fair nor timely (we just assume that the messagesatdre corrupted).

The systemS; corresponds to the basic system where no further assumspgienmade: irS,, the links can be
arbitrary slow or lossy. Ir5;, we assume that there exists at least one timely source éntestity is unknown). In
S», We assume that there exists at least one timely source éntientity is unknown) and every link is fair. Ifs, we
assume that there exists a timely routing overlaysinwe assume that there exists at least one timely bi-sourceqev
identity is unknown). IrSs, all links are timely (this system corresponds to the ctzdslynchronous system). Figure 1
(page 2) summarizes the properties of our systems.

2.4 Robust Stabilizing Leader Election

In the leader election, each procedsas a variabld.eader, that holds the identity of a process. Intuitively, eveniyal
all alive processes should hold the identity of the samegs®forever and this process should be alive. More formally,
there exists an alive procekand a timef such that at any timet’ > ¢, every alive procesg satisfiesLeader, = .

A robust pseudo-stabilizing leader election algoritigoarantees that, starting from any configuration, the gyste
reaches in a finite time a configuratigrirom which any alive procesg satisfiesLeader, = [forever wherd is an
alive process.

A robust self-stabilizing leader election algorithguarantees that, starting from any configuration, the syste
reaches in a finite time a configurationsuch that: (1) any alive procegssatisfiesLeader, = [in v wherel is
an alive process and (2) any alive procgsstisfiesLeader, = [in any configuration reachable from

3 Communication-Efficient Self-Stabilizing Leader Electon in S;

We first seek a communication-efficient self-stabilizingder election algorithm in a systefij. To get the communi-
cation-efficiency, we proceed as follows: Each proggssriodically sends ALIVE to all other processady if it thinks
to be the leadetri.e., only if Leader, = p (Lines 16-18 of Algorithm 1).

Algorithm 1 Communication-Efficient Self-Stabilizing Leader Election S;

CODE FOR EACH PROCES:
1: variables:
Leader, € {1,..n}
SendTimer,, ReceiveTimer,: non-negative integers

forall ¢ € V' \ {p} do
if receive(ALIVE) fromq then
if (Leader, # p) V (¢ < p) then /= this ensures the convergeneg
Leadery, «— q

2
3
4:
5: repeat forever
6
7
8
9

10: end if

11: ReceiveTimer, — 0
12: end if

13: end for

14: SendTimer, «— SendTimer, + 1
15: if SendTimer, > |§/3] then /* if p believes to be the leader, it periodically sends ALIVE toteatherx/

16: if Leader, = pthen

17: send(ALIVE) to every process except

18: end if

19: SendTimer, «— 0

20: endif

21: ReceiveTimer, « ReceiveTimer, + 1

22: if ReceiveTimer, > 8[§/a] then /x if ReceiveTimer,, expires ang does not believe to be the leadey,
23: if Leader, # pthen /* p suspects its leader and, so, elects itsglf
24: Leader, «— p

25: end if

26: ReceiveTimer, «— 0

27: endif

28: end repeat

Any procesw such thatLeader, # p always chooses as leader the process from which it receivBgEthe most
recently (Lines 6-13). When a procgssuch thatLeader, = p receives ALIVE fromg, p setsLeader, toqif ¢ < p
(Lines 6-13). Using this mechanism, there eventually exasimost one alive procegsuch thatLeader, = p.

Finally, every procesg such thatLeader, # p uses aounterthat is incremented at each loop iteration to detect if
there is no alive processsuch thatLeader, = ¢ (Lines 21-27). When the counter becomes greater than aclhieien
value,p can deduce that there is no alive procgssich thatLeader, = ¢. In this casep simply elects itself by setting
Leader, to p (Line 24) in order to guarantee the liveness of the electiomrder to ensure that there eventually exists
at least one procegssuch thatLeader, = g.

To apply the previously described method, Algorithm 1 usely one message type: ALIVE and twamunters
SendT'imer, and Receivelimery,. Any proces® such thatLeader, = p uses the counteSendI'imer, to period-
ically send ALIVE to the other processeReceiveTimer, is used by each procegdo detect when there is no alive
procesg; such thatLeader, = q. These counters are incremented at each iteration oefieat forevefoop in order to
evaluate a particular time elapse. Using the lower and uppend on the time to execute an iteration of this loiog.,(

« andg), each procesg knows how many iterations it must execute before a given 8fapse passed. For instance, a
proces® must countd/«] loop iterations to wait at leagttimes.

Theorem 3 below claims that, using the timestamyys? | and8[d/a] respectively fotSendT'imer, and Receive-
Timer,, Algorithm 1 implements a communication-efficient sekisitizing leader election in any systefiy. Due to
the lack of space, the proof of Theorem 3 has been moved tpitendix (Section A, page 13).

Theorem 3 Algorithm 1 implements a communication-efficient selbiditang leader election in SysteSy.

4 Impossibility of Communication-Efficient Self-Stabilizing Leader Election
in Sy

To prove that we cannot implement any communication-efficgelf-stabilizing leader election algorithm &y, we
show that it is impossible to implement such an algorithm gtranger systemsS;” whereS; is any systens, having

(1) all its links that are reliable and (2) having all its Isthat are timely except at most one which can be neitheryimel
nor eventually timely.

Lemma 1 Let A be any self-stabilizing leader election algorithmdy . In any execution of4, any alive procesg
satisfies: from any configuration whefeader, # p, 3k € IN such thatp modifiesLeader, if it receives no message
during k times.

Proof. Assume, by the contradiction, that there exists an execudtihere there is a configurationfrom which a
procesy satisfied eader, = ¢ forever withg # p while p does not receive a message anymore4As self-stabilizing,
it can start from any configuration. Sﬁ’, is a possible execution. Let be a configuration which is identical toexcept

Algorithm 2 Self-Stabilizing Leader Election afy

CODE FOR EACH PROCES$:
1: variables:
Leader, € {1,..n}
SendTimer,, ReceiveTimer,: non-negative integers
Collect,, Other Alivesy: sets of non-negative integers /x these sets are used to compute lgves,, setx/

3

4

5:

6: macros:
7 Alives, = OtherAlives, U {p}
8

9

repeat forever
10: forall g € V \ {p} do

11: if receive(ALIVE k,r) from g then

12: Collect, «— Collect, U {r}

13: if Kk <n —1then

14: send(ALIVEE + 1,r) to every process exceptandq /* retransmissior /
15: end if

16: end if

17: end for

18: SendTimer, «— SendTimer, + 1
19: if SendTimer, > |§/3] then /* periodicallyp sends a new ALIVE message to every other proegss

20: send(ALIVE,1p) to every process except

21: SendTimer, «— 0

22: endif

23: ReceiveTimery, «— ReceiveTimer, + 1

24: if ReceiveTimer, > (4n — 3)[§/a] then /= periodically,p selects a leader idlives, */
25: Other Alives, «— Collect,

26: Leadery, «— min(Alivesy)

27: Collect, «— 0

28: ReceiveAliveTimer, «— 0

29: end if

30: end repeat

thatq is crashed iny’. Consider then any executier. starting fronry’ wherep did not receive a message anymore. As
p cannot distinguisi,, ande., it behaves ire, as ine,: it keepsq as leader whilg is crashed — a contradictiond

Theorem 4 There is no communication-efficient self-stabilizing lraelection algorithm in any syste8i .

Proof. Assume, by the contradiction, that there exists a commtinicafficient self-stabilizing leader election
algorithmA in a systems; .

Consider any executionwhere no process crashes and all the links behave as timglpeBnition 1 (see page 2)
and Lemma 1, there exists a configuratipim e such that in any suffix starting from (1) any alive procesg satisfies
Leader, = [forever wherd is an alive process, and (2) messages are received infinitely through at least one input
link of each alive process except perhaps

Let a’ be the suffix ofe where every alive procegssatisfiesLeader, = [forever. Communication-efficiency and
(2) implies that messages are received infinitely ofteef_ly’ilthrough exactlyr — 1 links of the form ¢,p) with p # 1. Let
E' C E be the subset containing the- 1 links where messages transit infinitely ofterein

Consider now any executiafiidentical toe except that there is a time after which a certain liglp) € E’ arbitrary
delays the messagesy,f) can behave as a timely link an arbitrary long time, sande’ can have an arbitrary large
common prefix. In particular, can begin with any prefix of of the forme;e” with ” a non-empty prefix of.,. Now,
after any prefixae”, (¢,p) can start to arbitrary delay the messages and, in this gasegntually changes its leader
by Lemma 1. Hence, for any pref‘@e”, there is a possible suffix of executiond wherep changes its leader: for
some executions ol in S5 there is no guarantee that from a certain configuration theédedoes not changes anymore.
Hence,A is not self-stabilizing inS;” — a contradiction. O

By definition, any systen$;” havingn > 3 processes is a particular case of syst&mHence, follows:

Corollary 1 There is no communication-efficient self-stabilizing kxaglection algorithm in a syste), havingn > 3
processes.

5 Self-Stabilizing Leader Election inS; and Sy

S, is a particular case of systendg. So, by Corollary 1, there does not exist any self-staliizcommunication-
efficient leader election algorithm working in any systéimor S;. We now present a non-communication-efficient
self-stabilizing leader election algorithm f85: Algorithm 2. By definition, this algorithm is also self-siizing in Sy.
However, using the characterics®f, it can be simplified for working it as explained at the end of the section.

Algorithm 2 consists in locally computing in the sétives the list of all alive processes. Once the list is known by
each alive process, designate a leader is easy: each alisegsrjust outputs the smallest process aflitares set.

Any systemsSs is characterized by the existence of a timely routing oweila., for each pair of alive processes
(p,q) there exists at least two elementary paths of timely linkse &omp to ¢ and the other frony to p. Using
this characteristic, our algorithm works as follows: (1egwproces® periodically sends an (ALIVE,b) message
through all its links (Line 20 of Algorithm 2); (2) when res@ig an (ALIVE k,r) message from a procegsa process
p retransmits an (ALIVE; + 1,r) message to all the other processes exgéfpt < n — 1 (Lines 13-15).

Using this method, we have the guarantee that, any alperiodically receives an (ALIVE;,q) message for each
other alive process. Indeed, as there exists a timely routing overlay in theesystfor each pair of alive processes
(p,q), there exists at least one elementary path of timely linésfg to p whose length is bounded by— 1 (the upper
bound on the diameter of the timely routing overlay), andvessely. Hence, each procgssan periodically compute
a Collect, set where it stores the IDs of every other alive process: Brsedontained in all the messages it recently
received. Eventually, the IDs of every crashed process doesppear in th&'ollect sets anymore. Moreover, the
timely routing overlay guarantees that the IDs of each atliee process are periodically assigned intoélect sets
of all alive processes. Hence, by periodically assignimgdbntent olC'ollect,, (using a period sufficiently large) to the
setOtherAlives, (Line 25), we can guarantee the convergenc@tfier Alives, to the set of all the alive processes
different ofp. Finally, p just has to periodically choose its leader in the 4&tves,, = Other Alives, U {p} (Line 26)
so that the system eventually converges to a unique lead®ll\E note that Algorithm 2 still uses one message type:
ALIVE, and the two countersSendIimer, and Receivel imer,.

Theorem 5 below claims that, using the timestamp§3| and (4n — 3)[d/«] respectively forSendTimer, and
ReceiveTimerp, Algorithm 2 is self-stabilizing for the leader electioroptem in any syster§s. The proof of Theorem
5 is provided in the appendix (Section B, page 16).

Theorem 5 Algorithm 2 implements a self-stabilizing leader eleciio®ystenss.

S, is a particular case afs. Indeed, there exists a timely routing overlay in any systandue to the existence of a
bi-source. But, inSy, the diameter of the timely routing overlay is bounded by &aad ofn — 1 in S5. Hence, the
ALIVE messages need to be repeated only oncé,ito get the guarantee that each alive process receives tham in
bounded amount of time. Hence, Algorithm 2 remains selfilzng in any systens, if we replace the timestamp of
ReceiveTimer, by 9[6/0] (i.e., (4d 4+ 1)[4/5] with the diametet/ = 2) and the test of Line 13 by the tegt « 2.

6 Pseudo-Stabilizing Communication-Efficient Leader Eleton in S,

We now show that, contrary to self-stabilizing leader etattpseudo-stabilizing leader election can be commuioicat
efficiently done inS;. To that goal, we study an algorithm provided in [2]. In thigaithm, each procegsexecutes in
roundsRound, = 0, 1, 2,..., where the variablé&ound, keepsp’s current round. For each round a unique process,
q = Round, mod n+1, is distinguishedy is called thdeader of the roundThe goal here is to make all alive processes
converge to a round value having an alive process as leader.

When starting a new round a proces (1) informs the leader of the rountl,, by sending it a (STARTE,) message
if p # 1, (Line 6-8), (2) setRound, to k (Line 9), and (3) forceSendTimer, to [§/a] (Line 10) so that (ap sends
(ALIVE, k) to all other processes ji = I, (Lines 35-37) and (bp updatesLeader, (Line 38). While in the round
r, the leader of the round. (I, = r mod n + 1) periodically sends (ALIVE;) to all other processes (Lines 33-40).
A processp modifies Round, only in two cases{() if p receives an ALIVE or START message with a round value
bigger than its own (Lines 19-20), ¢ii) if p does not recently receive an ALIVE message from its rounddea # p
(Lines 26-32). In cas¢i), p adopts the round value in the message. In dade p starts the next round (Line 29).
Case(i7) allows a process to eventually choose as leader a processotinactly communicates. Ca$é) allows the
round values to converge. Intuitively, the algorithm isyde-stabilizing because, the processes with the uppeesalu
of rounds eventually designates as leader an alive probassarrectly communicates forever (perhaps the bi-squrce
thanks to(ii) and, then, the other processes eventually adopt this l¢ldeks to(:). Finally, note that Algorithm 3
uses two message types: ALIVE and START and the two counsersdTimer, and Receivel imery,.

Theorem 6 below claims that, using the timestamyys? | and8[d/a] respectively fotSendT'imer, and Receive-
Timer,, Algorithm 3 is pseudo-stabilizing and communicationedint for the leader election problem in any system
Ss. The proof of Theorem 6 is given in the appendix (Section @ephY).

Theorem 6 Algorithm 3 implements a communication-efficient pseudbiézing leader election in Systef.

7 Impossibility of Self-Stabilizing Leader Election in S,

To prove that we cannot implement any self-stabilizing &aection algorithm iz, we show that it is impossible to
implement such an algorithm in a particular cas&egflet S; be any systens, having all its links that are reliable but

Algorithm 3 Communication-Efficient Pseudo-Stabilizing Leader BatbnS,

CODE FOR EACH PROCES:

1: variables:

Leader, € {1,..n}

SendTimery, ReceiveTimer,, Round,: non-negative integers

. procedure Start Round(s) /* this procedure is called each tippeéncreases its round value/
6 if p # (s mod n + 1) then

7 send(STARTs)to s mod n + 1
8: endif
o

10

QaRwN

Roundy, «— s
SendTimer, — |5/3]
11: end procedure

13: repeat forever
14: forall g € V \ {p} do

15: if receive (ALIVE k) or (STARTE) from ¢ then

16: if Round, > k then

17: send(STARTRound,,) to ¢

18: else

19: if Round, < kthen /* to ensure the convergeneg

20: StartRound (k)

21: end if

22: ReceiveTimer, < 0 /* if k > Round,, p restartsReceiveT imer, */
23: end if

24: end if

25: endfor

26: ReceiveTimer, < ReceiveTimer, + 1

27: if ReceiveTimer, > 8[d/a] then /* on time outp changes its round valuegfis not the leader of current round/
28: if p # (Round, mod n + 1) then

29: StartRound(Roundy, + 1)

30: end if

31: ReceiveTimery, < 0

32: endif

33: SendTimer, — SendTimer, + 1
34: if SendTimer, > |§/3] then

35: if p = (Round, mod n + 1) then

36: send(ALIVE,Round,) to every process except /* the leader of the round periodically send ALIVE to each otvexcessk/
37: end if

38: Leadery, «— (Round, mod n + 1) /* p periodically computed.eader,, */

39: SendTimer, < 0

40: endif

41: end repeat

containing no eventually timely overlay.

Letmbe any message sent at a given timé/e say that a messagg is olderthanmif and only if m’ was initially in a
link or m’ was sent at a timg& such that’ < ¢. We callcausal sequencany SEqQUENCEY, 1111 ,... 1, D5, it 1, Pk — 1,110k
such that: (1¥i,0 < i < k, p; is a process anth; ., is a message, (2)i, 1 < i < k, p; receivesn; fromp,_1, and (3)
Vi, 1 <1i < k, p; sendsn;; after the reception of:;. By extension, we say that, causally depends gmw,. Also, we
say thatmy is anewmessage that causally dependspgrafter the message,- if and only if there exists two causal
sequencesy,my,... Prx—1,Mg andpg,mis,...pr—1,mi sSuch thatn,. is olderthanm; .

Lemma 2 Let A be any self-stabilizing leader election algorithm$i . In every execution o, any alive process
p satisfies: from any configuration whefeeader,, # p, 3k € IN such thatp changes its leader if it receives mew
message that causally dependslamder, during k times.

Proof. Assume, by the contradiction, that there exists an exemudtihere there is a configurationfrom which a
process satisfiebeader;, = g forever withg # p while from~ p does not receive anymoren@wmessage that causally
depends on. As A is self-stabilizing, it can start from any configuration., 80 s a possible execution of. Let~’ be

a configuration that is identical tpexcept thay is crashed iny’. As p only received messages that do not depend on
in e, (otherwise, this means that from p eventually receives at least onewmessage that causally depends;dn

e), there exists a possible execut@ starting fromy’ wherep received exactly the same messages as ifthe fact
thatq is crashed just preventsfrom receiving the messages that causally depeng.odencep cannot distinguisla_v’
ande7 andp behaves inZ? as inej’: it keepsq as leader forever whileg is crashed:A is not a self-stabilizing leader
election algorithm — a contradiction. O

Theorem 7 There is no self-stabilizing leader election algorithm isystems;.

Proof. Assume, by the contradiction, that there exists a selfistaiy leader election algorithr in a systemsS; .
By Definition 1, in any execution ofl, there exists a configurationsuch that in any suffix starting fromthere exists
a unique leader and this leader no more changese betan execution afli where no process crashes and every link

is timely. Let! be the process which is eventually electedinConsider now any executiar identical toe except
that there is a time after which there is at least one link iohegaath from/ to some procesg that arbitrary delays
messages. Then,ande’ can have an arbitrary large common prefix. Hence, it is p@ssibconstruct executions of
beginning with any prefix o wherel is eventually elected (during this prefix, every link behsgwas a timely link) but

in the associated suffix, any causal sequence of messagestivp is arbitrary delayed and, by Lemmag2eventually
changes its leader to a process: . Thus, for any prefiXe of e where a process is eventually elected, there exists a
possible execution having as prefix and an associated sufikin which the leader eventually changes. Hence, for
some executions ofl, we cannot guarantee that from a certain configuration thedewill no more change4 is nota
self-stabilizing leader election algorithm — a contraitint O

By Definition, any systend; is also a systen¥,. Hence, follows:

Corollary 2 There is no self-stabilizing leader election algorithm isystemS, havingn > 2 processes.

8 Communication-Efficient Pseudo-Stabilizing Leader Eleton in S,

From Corollary 2, we know that there does not exist any dalbifizing leader election algorithm ifi.. We now show
that pseudo-stabilizing leader elections exisfin The solution we propose is an adaptation of an algorithraigeal
in [3] and is communication-efficient.

Algorithm 4 Communication-Efficient Pseudo-Stabilizing Leader Batbn S,

CODE FOR EACH PROCES®:

1: variables:

: Leadery, € {1,..n}, OldLeader, € {1,..n}

SendTimery,, ReceiveTimery: non-negative integers

Counterp[1...n], Phase,|[1...n]: arrays of non-negative integers /= to manage the accusatiorg

Collect,, Other Actives,: sets of non-negative integers /x these sets are used to compute thefives,, setx/

macros:
Actives, = OtherActives, U {p}

10: repeat forever
11: forall g € V \ {p} do

12: if receive(ALIVEgcnt,qph) from g then /* gent andgph correspond to the value @fountery[q] and Phaseq[q) wheng sends the messagg
13: Collect,, «+ Collect, U {q}

14: Countery[q] < gent

15: Phasey|q] < qph

16: end if

17: if receive(ACCUSATIONph) from g then /* on reception of an ACCUSATION messagg
18: if ph = Phase, [p] then /* if the accusation is legitimate/

19: Countery[p] « Countery[p] + 1 /* Countery|[p] is incremented: /

20: end if

21: end if

22: end for

23: SendTimer, «— SendTimer, + 1
24: if SendTimer, > |§/3] then /* if p believes to be the leader, it periodically sends ALIVE toteathers/

25: if Leader, = pthen

26: send(ALIVE Counter,[p],Phase, [p]) to every process except

27: end if

28: SendTimer, «— 0

29: endif

30: ReceiveTimer, < ReceiveTimer, + 1

31: if ReceiveTimer, > 5[§/a] then

32: OtherActives), «— Collect,

33: if Leader, ¢ Actives, then /* p sends an ACCUSATION message to its leader when it suspects it
34: send(ACCUSATIONPhase,[Leadery]) to Leader),

35: end if

36: OldLeader, < Leadery

37: Leadery, < r such thatCounterp[r],r) = min{(Countery[ql,q) : ¢ € Actives,} /* p periodically computed eader,, */
38: if (OldLeader, = p) A (Leader, # p) then /* whenp loses its leadership, it increments its phage
39: Phasey[p) < Phasep[p] + 1

40: end if

41: Collect, «— 0

42: ReceiveTimery, «— 0

43: endif

44: end repeat

To obtain communication-efficiency, Algorithm 4 uses thmegrinciple as Algorithm 1: Each procesgeriod-
ically sends ALIVE to all other processesly if it thinks it is the leader However, this principle cannot be directly
applied inS,: if the only source happens to be a process with a large ID, the leadexahipscillate among some other
alive processes infinitely often because these procesedxecalternatively considered as crashed or alive.

To fix the problem, Aguilerat al propose in [3] that each processtores in an accusation count€ounter,[p),
how many time it was previously suspected to be crashed. ,Tiherthinks that it is the leader, it periodically sends

10

ALIVE messages with its current value 6fbunter,[p] (Lines 23-29). Any process stores in dntives set its own ID

and that of each process it recently received an ALIVE mesgages 8 and 12-16). Also, each process keeps the most
up-to-date value of accusation counter of any process froitwit receives an ALIVE message. Finally, any procgss
periodically chooses as leader the process having theeshaltcusation value among the processes iAdtsves, set

(IDs are used to break ties). After choosing a leader, if daglér ofy changesq sends an ACCUSATION message to
its previous leader (Lines 33-35). The hope is that the @uriteach source remains bounded (because all its output
links are timely), and, as a consequence, the source witbrttadlest counter is eventually elected.

However, this algorithm still does not work &y : the accusation counter of any source may increase infjroféetn.

To see this, note that a soureean stop to consider itself as the leader: wheaelects another procegsis its leader (a
process inActivess with a smaller counter). In this case, the source volonteogssending ALIVE messages for the
communication efficiency. Unfortunately, each other pescénat considereglas its leader eventually suspesgtand,

so, sends ACCUSATION messagesstoThese messages then cause incrementatiosiaofusation counter. Later,
due to the quality of the output links pf(p may not be a sourcep,can also increase its accusation counter and then the
source may obtain the leadership again. As a consequeidegthership may oscillate infinitely often.

To guarantee that the leadership does not oscillate irlfjrofeen, Aguileraet aladd a mechanism so that the source
increments its own accusation counter only a finite numbéinods. A process now increments its accusation counter
only if it receives a “legitimate” accusation: an accusatie to the delay or the loss of one of its ALIVE message and
not due to the fact that it voluntary stopped sending messafimdetect if an accusation is legitimate, each propess
saves inPhasep[p] the number of times it loses the leadership in the past ariddes this value in each of its ALIVE
messages (Line 26). When a procgs®ceives an ALIVE message from it also saves the phase value sentpby
in Phasegy[p] (Line 15). Hence, whep wants to accusg, it now includes its own view op’s phase number in the
ACCUSATION message it sends to(Line 34). This ACCUSATION message will be considered asdtilegte byp
only if the phase number it contains matches the currentgpbase ofp (Lines 18-20). Moreover, whenevgtoses the
leadership and stops sending ALIVE message voluntaiycrementsPhase,[p] and does not send the new value to
any other process (Line 38-40): this effectively cays#signore all the spurious ACCUSATION messages that result
from its voluntary silence. Finally, note that Algorithm 4es two message types: ALIVE and ACCUSATION, as well
as, the two countersiendIimer, andReceivel'imery.

Theorem 8 below claims that, using the timestarmyys?| and5[d/a/] respectively forSendTimer, and Receive-
Timery, Algorithm 4 is pseudo-stabilizing and communicationat for the leader election problem in any system
So. Due to the lack of space, the proof of Theorem 8 has been mowbe appendix (Section D, page 19).

Theorem 8 Algorithm 4 implements a communication-efficient pseudbiizing leader election in Systef.

9 Impossibility of Communication-Efficient Pseudo-Stabiizing Leader Elec-
tionin &

Let S; be any systens, with an eventually timely source and> 3 processes. In [3], Aguilerat al show that there
is no communication-efficient leader election algorithmaisystemsS; . Now, any pseudo-stabilizing leader election
algorithm inS; is also a pseudo-stabilizing leader election algorithr&iinby Theorem 2 (page 5). Hence, follows:

Theorem 9 There is no communication-efficient pseudo-stabilizirrglés election algorithm in a systey having
n > 3 processes.

10 Pseudo-Stabilizing Leader Election inS;

By Theorem 9, there is no communication-efficient pseudbibzing leader election algorithm in a syste$n having

n > 3 processes. However, using similar techniques as thoséopsdy used in the paper, we can adapt the robust
but non communication-efficient algorithm f6f given in [1] to obtain a pseudo-stabilizing but non commatian-
efficient leader election algorithm fa$;. Due to the lack of space, we do not present the algorithm, lirerethe
algorithm and its proof of pseudo-stabilization are preddn the appendix (Section E, page 22).

11 Conclusion and Future Works
We studied the problem of implementing robust self- and geestabilizing leader election in various systems with

weak reliability and synchrony assumptions. We tried topmse, when it is possiblesommunication-efficienn-
plementations. We first show that the notions of immediatesliness and eventually timeliness are “equivalent” in

11

stabilization in a sense that every algorithm which is stahg in a systemS having some timely links is also stabi-
lizing in the systemS’ whereS’ is the same system @sexcept that all the timely links i are eventually timely in

&', and reciprocally. Hence, we only consider timely progertihat are immediate. We study systems where (1) all
the processes are timely and can communicate with each ottheome of them may crash and, (2) some links may
have timely and reliability properties. We first showed ttia full timelinessis minimal to have any self-stabilizing
communication-efficient leader election in the systems wesier. Nevertheless, we showed that a self-stabilizing
leader election that is not communication-efficient can b&ioed in a weaker system: a system where there exists
a timely routing overlay We also showed that no self-stabilizing leader electiam & implemented in our systems
without this assumption. Hence, we then focused on the psstabilization. We showed that leader election can
be communication-efficiently pseudo-stabilized in the saystems than those where robust leader elections exist: in
systems having imely bi-sourceand systems havingtanely sourceandfair links (note that getting communication-
efficiency in a system having @mely routing overlayremains an open question). Using then a previous result of
Aguileraet al ([3]), we recalled that communication-efficiency cannotdame if we consider systems having at least
one timely sourcbut where the fairness of all the links is not required. Hinale showed that, as the robust leader elec-
tion, the pseudo-stabilizing leader election can be nanroanication-efficiently implemented in such systems. Henc
we can have a robust pseudo-stabilizing leader electiomiogt all the systems where a robust leader election already
exists: the gap between robustness and pseudo-stabiliigtness is not really significant in fix-point problemstsu

as leader election.

There is some possible extensions to this work. First, westady robust stabilizing leader election in systems
where only a given number of processes may crash. Then, weoresider the robust stabilizing leader election in some
other models as those in [15, 19]. We can also consider thestaabilizing leader election in systems with various
topology. Finally, we can study the implementability of usbstabilizing decision problems suchamsensus

References

[1] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues €@nnier, and Sam Toueg. On implementing omega with weadiéty and synchrony
assumptions. Unpublished, journal version of [3], Jan2&7.

[2] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hegérauconnier, and Sam Toueg. Stable leader electidnlS6, pages 108-122, 2001.

[3] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hegurauconnier, and Sam Toueg. On implementing omega witk rediability and
synchrony assumptions. PODC, pages 306-314, 2003.

[4] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Heg#&auconnier, and Sam Toueg. Communication-efficienetesdction and consensus
with limited link synchrony. InPODC, pages 328-337, 2004.

[5] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hegdrauconnier, and Sam Toueg. Consensus with byzantineefaind little system
synchrony. InDSN pages 147-155, 2006.

[6] Efthymios Anagnostou and Vassos Hadzilacos. Tolegatiansient and permanent failures (extended abstract)yVDAG pages 174-188,
1993.

[7] J. Beauquier and S. Kekkonen-Moneta. Fault-toleramzbsglf-stabilization: Impossibility results and soluousing failure detectordnt. J
of Systems Scienc@1):1177-1187, 1997.

[8] Joffroy Beauquier, Maria Gradinariu, and Colette Jalhn®lemory space requirements for self-stabilizing leadect®n protocols. IlPODC
'99: Proceedings of the eighteenth annual ACM symposiumrioreiples of distributed computingages 199-207, New York, NY, USA, 1999.
ACM Press.

[9] Joffroy Beauquier and Synndve Kekkonen-Moneta. Os+fslvable distributed problems. RODC page 290, 1997.
[10] James E. Burns, Mohamed G. Gouda, and Raymond E. M8kabilization and pseudo-stabilizatioDistrib. Comput, 7(1):35-42, 1993.
[11] Tushar Deepak Chandra, Vassos Hadzilacos, and Sang.Tohe weakest failure detector for solving consenSusCM 43(4):685-722, 1996.

[12] EW Dijkstra. Self stabilizing systems in spite of dibtrted control. Communications of the Association of the Computing Machijrie/:643—
644, 1974.

[13] S Dolev, A Israeli, and S Moran. Uniform dynamic selésilizing leader electionIEEE Transactions on Parallel and Distributed Systems
8(4):424-440, 1997.

[14] Ajei S. Gopal and Kenneth J. Perry. Unifying self-stihtion and fault-tolerance (preliminary version). RODC pages 195-206, 1993.

[15] Martin Hutle, Dahlia Malkhi, Ulrich Schmid, and Lidonghou. Brief announcement: Chasing the weakest system nfi@dighplementing
omega and consensus.RPmoceedings Eighth International Symposium on StabibrmatSafety, and Security of Distributed Systems (SSS 2006)
LNCS, pages 576-577, Dallas, USA, Nov. 2006. Springer ‘gerla

[16] Martin Hutle and Josef Widder. On the possibility and tmpossibility of message-driven self-stabilizing fadldetection. IrSelf-Stabilizing
Systemgpages 153-170, 2005.

[17] Martin Hutle and Josef Widder. Self-stabilizing fadudetector algorithms. Iarallel and Distributed Computing and Networksages
485-490, 2005.

[18] Mikel Larrea, Antonio Fernandez, and Sergio Arévaliptimal implementation of the weakest failure detectorsfulving consensus. IBRDS
pages 52-59, 2000.

[19] Dahlia Malkhi, Florian Oprea, and Lidong Zhomegameets paxos: Leader election and stability without evétituely links. In DISC, pages
199-213, 2005.

[20] T. Masuzawa. A fault-tolerant and self-stabilizingpfwcol for the topology problemProceedings of the second Workshop on Self-Stabilizing
Systemgspage article 1, 1995.

12

APPENDIX

The following observation is used along the proofs of Thaw to E.

Observation 1 For every alive process, for every time, p executes at least om®mpleteiteration of itsrepeat forever
loop during the time intervdk, ¢ + 20].

A Proof of Theorem 3

Starting from any configuration, since the second iteratibthe repeat forevetoop begins (after at mogt times), we
are sure that any procegsends a message only if the test of Line 16 is tieg,only if Leader, = p °. Hence:

Observation 2 Starting from any configuration, a processends a message at tirtie3 only if Leader,=p at timet.

Lemma 3 Starting from any configuration, if a proceggseceives a message at timet > ¢ + 303, then there exists
another alive procesg that sendsn while Leader, = p at a timet’ such that — (6 + 203) <t < t.

Proof. The lemma is proven by the following three claims:
1. Any process that is crashed in the initial configuration mesgnds any message during the execution.

2. g cannot receive at time> ¢ + 23 a message that was in a link since the initial configuration.

Claim Proof: In S5, all messages initially in the links are delivered at mostirae §. Whengq receives such
a message, it is received at most one compigpeat forevetoop iteration after its delivrance: at most at time
0 + 23 by Observation 1. So, any message received ayany timet > § 4+ 24 was not initially in the link.

3. g receives a messagefrom the alive procesgat timet > §+ 3 only if p sendsn while satisfyingLeader, = p
atatimet’ such that — (6 +20) <t < t.

Claim Proof: By Claim 2,q receivesm at timet > § + 33 only if p effectively sendsnto ¢ at a timet’ < t¢.
As ¢ receiveam at most23 times (one complete iteration of thepeat forevetoop) after its delivrance anih is
delivered at most times after its sending, we can deduce that ¢ — (§ + 23). Finally, ast’ > t — (§ + 20)
andt > § + 35, we havet’ > 3 and, by Observation 2, we can deduce fhaatisfiesLeader, = p at timet’.

d

Starting from any configuration, since the second iteratibte repeat forevetoop begins (after at mogt times), any
process; setsLeader, to p # g only if ¢ previously receives ALIVE fronp. Hence, follows:

Observation 3 Starting from any configuration, any procegsetsLeader, to p # g attimet > (3 only if ¢ previously
receives ALIVE fronp.

From the code of Algorithm 1, Observation 3, and Lemma 3, wedsduce the following lemma:

Lemma 4 Starting from any configuration, any processwitchesLeader, fromgq top # g attimet > ¢ + 33 only if:
(1) pis an alive process anpkq, and (2)p sends ALIVE tg while Leader,=p at a timet’ with t—(0+203)< ' <t.

Definition 3 LetCandidates(t) be the set containing any alive processuch thatleader, = p at timet.

Lemma 5 Starting from any configuratioivi € IN*, V¢t > 3+ i(6 + 23), if Candidates(t) > 0 and3t’ > ¢ such that
Candidates(t') = 0, then there exists an alive processuch thap < [min(Candidates(t)) — (i — 1)] and a time;
witht — (0 + 28) < t; < t’ such thatLeader, = p at timet,.

Proof. By induction oni.

Induction fori = 1: Lett be a time such that> ¢ + 33. Assume thaCandidates(¢t) > 0 and3¢’ > ¢ such that
Candidates(t') = 0. Letqg = min(Candidates(t)). There is a time; such that < t; < ' whereq switchesLeader,
from g to p # ¢. By Lemma 4 is an alive process such that< ¢ andp sends ALIVE tog while Leader, = p ata
timet; with¢t; — (6 + 20) <t; <t;. Now,t < t; <t'. So,t — (6 +203) < t; < t' and the induction holds far= 1.

5n.b, the program counter gf can initially point out to Line 17: thep may send messages during the first loop iteration whileder, # p.

13

Induction AssumptionLet k € INt. Assume thati € INT such that < k we have:Vvt > g+ i(d + 20), if
Candidates(t) > 0 and3t’ > ¢ such thaCandidates(t') = 0, then there exists an alive process. [min(Candida-
tes(t)) — (i —1)] and atime; with ¢ — i(§ + 25) < t; < t’ such thatLeader, = p at timet;.

Induction fori = k + 1: Let¢ be a time such that> 3+ (k + 1) x (6 + 20). Assume thaCandidates(t) > 0
and3t’ > ¢ such thatCandidates(t') = 0. Letg = min(Candidates(t)). As previously, there is a timg such that
t < t; <t whereq switchesLeader, from g to r # ¢ and, by Lemma 4y is an alive process such that< ¢ andr
sends ALIVE tog while Leader, = r at a timet,. with t; — (6 + 208) < t, < t;. Now, ¢, > B+ k x (6 + 24) and
Candidates(t,) > 0, so, by induction assumption: there exists an alive progessnin(Candidates(t,)) — (k — 1)
and a time, with ¢, — k(6 4+ 28) < tx < t’' such thatLeader, = p at timet,.

(a) We now show that < [min(Candidates(t)) — k]. First,min(Candidates(t,;)) <r,so,p < r—(k—1). Then,
r < ¢,s0,r < g—1(rememberthat’ = {1,...n}). Hencep < ¢q—1—(k—1),i.e,p < [min(Candidates(t)—k].

(b) Finally, we show thap is an alive process such thatader, = p at timet, witht — (k + 1) x (6 + 28) <
t, < t'. First, we already know that is an alive process such thAtader, = p at timet,. Then,t < ¢; and
tj—(64+20) < t, impliesthat—(d+25) < t,. Finally, ast, —k(d+23) < ¢, < ¢’ andt—(6+25) < t,, we have
[t—(04+28)—k(04+203)] < tx < t'. Hencep satisfiesLeader, = p attimet;, witht—(k+1)x (§+28) <ty < t'.

Hence, by (a) and (b), we can deduce that the induction hotds# k + 1. O

Lemma 6 Starting from any configuratiovt > 8 + n(6+20), (Candidates(t)>0) = (Candidates(t')>0, Vt'>t).

Proof. Assume, by the contradiction, that > 5 + n(d + 23) such thaiCandidates(t) > 0 and3t’ > t such that
Candidates(t') = 0. Then, by Lemma 5, there exists an alive progessch thap < min(Candidates(t)) — (n —1)
and a timet” with t — n(6 + 28) < t” < t’' such thatLeader, = p at timet”. Now, min(Candidates(t)) < n
(V={1,..n}). So,p <n—(n-1),i.e,p < 1—acontradiction. O

Starting from any configuration, since the second iteratibtie repeat forevetoop begins (after at mogt times), any
proces executes Line 11 of the algorithm only if the test of Line 7riset Hence, follows:

Observation 4 Starting from any configuration, any procegsexecutes Line 11 at time > [only if p previously
receives an ALIVE message (in the same iteration ofg¢peat foreveloop).

Lemma 7 Starting from any configuratiowt > (n + 1) + (2n + 8[§/«a] + 6)8 + 1, Candidates(t) > 0.
Proof. Consider the time intervd(n + 1)(6 +28) + 26+ 1, (n + 1)d + (2n + 8[d/a] + 6)5 + 1].

- Assume that there exists a proceghat executes Line 11 at a times [(n+ 1)(6 +28) + 28+ 1, (n+ 1)§ +
(2n + 8[d/«a] + 6)5 + 1]. Then,p receives an ALIVE message from a procedsefore executing Line 11 but
in the same iteration of theepeat forevetoop by Observation 4,e., at most3 times before. Sop receives an
ALIVE message frony atatimet’ € [(n+1)(0+26)+3+1, (n+1)0 + (2n+8[d/a] +6)5 +1[. By Lemma
3, ¢ is alive and sends ALIVE while satisfyinfeader, = ¢ at a timet” such that’ — (§ + 23) < ¢’/ < .
So,Candidates(t”) > 0 with t” € [n(d +25)+ B+ 1, (n +1)0 + (2n + 8[d/a| + 6)5 + 1[andVt"” > t”,
Candidates(t"") > 0 by Lemma 6. Ag” < (n+ 1)d + (2n + 8[§/a] 4+ 6)3 + 1, the lemma holds in this case.

- Assume that no process executes Line 11 during the timevaltén + 1)(6 +28) + 26+ 1, (n + 1)d + (2n +
8[0/a] +6)5 + 1].

(1) If Candidates((n+1)(d+28) +26+1) > 0, thenvt > (n+1)(6 +28) + 26 + 1, Candidates(t) > 0
by Lemma 6 and the lemma holds in this case.

(¢4) Assume now thaC'andidates((n+1)(6+28)+28+1) =0, i.e, any alive procesgsatisfiesLeader, # p
attime(n + 1)(d + 258) + 28 + 1. Then, the program counter of any alive proceg®ints out to the first
instruction of therepeat forevetoop at atimen +1)(§ +268) +28+1 <t < (n+1)(6 +208) + 35+ 1.
Fromt, p executes a complete iteration of the loop at most eyetimes. So, eaclp executes at least
8[d/a] + 1 complete loop iterations from timeto time (n + 1)6 + (2n + 8[6/a] 4+ 6)5 + 1. Now, we
assume that no process executes Line 11 from tingetime (n + 1) + (2n + 8[6/a| + 6)3 + 1. So,
during this period, we are sure that, for each alive progedgeceiveT imer, is incremented at each loop
iteration until ReceiveT'imer, > 8[d/a]. As Receivel'imer is always greater or equal to 0, any alive
process satisfieReceiveTimer, > 8[5/a] and setd.eader, to p at the lattest during thgs[§/a] + 1)1
loop iteration executed in the time interval we consider.ughanyp setsLeader, to p at a timet’ <
(n+1)5+ (2n+ 8[d/a] 4+ 6)8 + 1. In this caseCandidates(t') > 0 and the lemma holds by Lemma 6.

14

Lemma 8 Starting from any configuration, if an alive procgssontinuously satisfiedeader, = p during the time
interval[t, t + & 4 (], thenp sends at least one ALIVE message to any other process dhigthe interval.

Proof. Lett be any time. From, the program counter gf points out to the first instruction of ttrepeat forevetoop
at atimet’ <t + 3. Fromt’, p executes a complete iteration of the loop at most eyetiynes. Also, fromt’, while
SendTimer, < |0/3], SendTimer), is incremented at each loop iteration. SoSesadT'imer, is always greater or
equal to 0,SendTimer, > |&/3] becomes true at the lattest during thi/3|** loop iteration fromt’ andp sends
ALIVE to any other process in the same loop iteration (Linds2D). Hence, front’, p sends ALIVE to any other
process in at mogt /3| x [times,i.e, in at most) times. Ast’ < ¢ + (3, the lemma is proven. O

Lemma 9 Starting from any configurationt > (n+ 1) + (2n+8[0/a| +6)5+ 1,3t" € [t, t + 26 + 3] such that
an alive process sends ALIVE to every other processes attime

Proof. Lettsuchthat > (n+1)d+ (2n+8[0/a] +6)3+ 1. By Lemma7yt’,t' > t, there exists at least one alive
process; such thatLeader, = ¢ at timet’. Letp be an alive process such thatader, = p at timet + ¢ + 2.

- Assume thap continuously satisfiefeader, = p during the time intervalt + § + 23, t + 26 + 35]. Then,p
sends at least one ALIVE message to any other process durng + 23, t + 2§ + 35] by Lemma 8.

- Assume thatthere is atintee |t+0+23, t+25+35] wherep setsLeader), to ¢ such thay # p. Then,g is alive
andg sends ALIVE top at a timet” such that’ — (0 4+ 28) < ¢’ < ¢’ by Lemma 4. From Algorithm 15 sends
ALIVE to every other process at timé&. Finally, ast + 4 + 28 < t' < t+26+ 33, we have < t” <t+25+38.
Hence, at least one alive process (actuglysends ALIVE to every other processes durinig + 24 + 35].

a

Starting from any configuration, since the second iteratibthe repeat forevetoop begins (after at mogt times), we
are sure that a procepsetsLeader, to p (Line 24) only if the two tests of Lines 22-23 are true. Herfodpws:

Observation 5 Starting from any configuration, any procgssetsLeader, to p at timet > § only if (Leader, # p)
A (ReceiveTimer, > 8[6/a]) at timet.

Lemma 10 Starting from any configuratiory setsLeader, to p at timet > 85 only if p do not receive any ALIVE
message durinft — 84, t].

Proof. Assume, by the contradiction, that an alive progessceives at least one ALIVE message durihg 84,]
(with t > 86) butp setsLeader, to p at timet. From Algorithm 1, after receiving ALIVE (Line 7)) resetsReceive-
Timery to 0 (Line 11) andp does not sefeader), to p between these two actions. Hen&eceiveTimer, = 0 holds at
atimet’ € [t — 84, t]. Now, to setLeader, to p at timet, p must satisfy(Leader, # p) A (ReceiveTimer, > 8[§/a])

by Observation 5. AfteceiveTimer, is incremented only once at each iteration of tbeeat foreveftoop, Receive-
Timer, will be greater tha® |5/« after at leas8[d/«] + 1 iterations from’. As each iteration is executed in at least
a times, ReceiveT'imer, Will be greater thar®[d/«] after at leas8d + « times from¢’. Ast’ 4+ 86 + o > t, we can
conclude thap cannot sefLeader, to p during[t — 84, t] — a contradiction. O

Lemma 11 Starting from any configuratiowt > (n+4)0 + (2n+8[d/a] 4+ 11)3+ 1, every alive process satisfies:
if Leader, # p attimet, thenLeader, # p forever from time.

Proof. By Lemma 9yt > (n+1)0+ (2n+8[d/a]+6)8+ 1,3t € [t, t + 25 + 35] such that an alive process sends
ALIVE to p attimet’. As all the links are timely, such a message is delivered at tniimes after its sending. Also, each
alive process receives a messagat most one complete iteration of iepeat forevetoop after the delivrance on, i.e.,

at most23 times after the delivrance ofi by Observation 1, page 13. Thiig, > (n + 1)d + (2n + 8[d/a] + 6)5 + 1,

p receives ALIVE after at mosié + 54 times fromt. As 36 + 53 < 89, we haveVt > (n + 1)d + (2n + 8[d/a] +
6)5+1+35+50,1.e,Vt > (n+4)0+ (2n+8[d/a] +11)5 + 1, any alive process do not setLeader, to p at time

t by Lemma 10 and the lemma is proven. O

Lemma 12 Starting from any configuratiotvt > (n +6)d + (2n+8[d/a| + 14)5 + 1, every alive process satisfies
Leader, = [forever wherd is an alive process.

15

Proof. Vt> (n+4)0+ (2n+8[d/a]+11)3+ 1, Candidates(t) > 0 by Lemma7 andvt’ > ¢, Candidates(t’) C
Candidates(t) by Lemma 11. So, there is some procegsssich thatLeader, = p at any timet’ € [t, t + § + f].
Let Finalists(t) be the set of these processes. Let min(Finalists(t)). By Lemma 8] sends at least one ALIVE
message to every other alive process during this time iatefthese ALIVE messages are delivered at ndosimes
after their sending because all the links of the system arelyi. Finally, each alive process receives a messagée
most one complete iteration of itspeat forevetoop after the delivrance oh, i.e., at mos2 3 times after the delivrance
of m by Observation 1, page 13. Hence, at nist- 35 times fromt, every alive procesg such thaip # [receives
ALIVE from [and setd.eader, to ! is the same loop iteration (Lines 6-13). At the end of the ltefation,i.e., at most
20 + 44 times fromt, every alive procesg satisfiesLeader, = [and! is now the only process able to send ALIVE
(Lines 16-18). Hence, every alive processatisfiesLeader, = [forever at mosgd + 33 times fromt. O

Proof of Theorem 3. By Lemma 12, starting from any configuration, the systemheadn aboundedime a configu-
ration~ from which there is a unique leader forever. As the time teheais bounded, this means that, starting from
any configuration, after a bounded time, the system is in &igomtion from which it cannot deviate from its specifi-
cation whatever the execution we consider. Hence, Algerithis a self-stabilizing leader election algorithm. Also, i
Algorithm 1 only a procesp such thatLeader, = p can send messages. So, since the system is stabilized, ranly o
process (actually, the leader) sends messages: Algoritsradinmunication-efficientd

B Proof of Theorem 5

Lemma 13 Starting from any configuration, any alive process evemyuab more receives (ALIVE,q) messages
wheregq is any crashed process.

Proof. Letq be any process that is crashed in the initial configuratiarst,Fasq is crashed, the messages containing
(ALIVE,1,q) are no more sent. Then, each time a process receives an LN message, it sends (ALIVEH+ 1,q)
only if £ < n — 1 (Lines 11-16 of Algorithm 2). Finally, every message in siiis eventually received or lost. So, the
number of (ALIVE—,q) messages in the system decreases infinitely often untihneg zero. a

Lemma 14 Starting from any configuration, any alive processends (ALIVHE,,p) to all other processes at least every
0 + B times.

Proof. Consider any time. Fromt, the program counter gf points out to the first instruction of threpeat forever
loop atatime’ < ¢+ 3. Fromt’, p executes a complete iteration of the loop at most epdignes. Now, from¢’, while
SendTimer, < |0/3], SendTimer), is incremented at each loop iteration. SoSas.dTimer, is always greater or
equal to 0, the tes§endT'imer, > | /3] becomes true at the lattest during th 3| *" loop iteration fromt’ andp
sends (ALIVE],p) to all other processes in the same loop iteration (Line22Pp-Hence, front’, p sends (ALIVE],p)
to all other processes in at mdst/ 3| x (3 times,i.e, in at mos® times. Ast’ < ¢ + (3, the lemma is proven. O

Definition 4 LetG’ = (V’,E’) be the strongly connected graph representing the timaljimg overlay of the system.

Lemma 15 Let p and g be two alive processes such that# ¢. Starting from any configuratiory receives an
(ALIVE d,q) message at least evefy + 1)d + 3d times wherel is the distance from topin G'.

Proof. Letp andq be two alive processes. We prove this lemma by induction eristancel from g top in G.
Induction ford = 1: Assume that the distance frogrto p is equal to 1 inG’. This means that the linfg,p) exists
in G, i.e, there exists a directed timely link fromto p in the communication graph of the system.

1. By Lemma 14¢ sends (ALIVE,1q) to each other process (in particufgreveryo + 3 times.

2. Each (ALIVE,1g) message sent from to p is delivered top at mosté times after its sending thanks to the
timeliness the the link from to p.

3. preceives a message sent frgrat most one complete iteration of thepeat forevetoop after its delivrance,e.,
at most23 times after its delivrance by Observation 1.

Hencep receives an (ALIVE,1;) message at most evey + 33 times and the induction is verified for the distance 1.
Induction Assumptionlet k£ such thatl < k < D whereD is the diameter ofy’. Assume that every alive process
at distance: from ¢ in G’ receives an (ALIVEE,q) message at least evelly + 1)6 + 3k3 times.
Induction ford = k + 1: Let be process at distanéet 1 from ¢. Letj by a neighbor of at distancé: from q.

16

1. j receives an (ALIVEL,q) message at least evelly + 1)d + 3k times by induction assumption.

2. Ask < DandD < n — 1, we havek < n — 1, so, after each reception of any (ALIVIEEg) messagej sends
(ALIVE, k + 1,¢) to i in the samaepeat forevetoop iteration (Lines 11-16),e., j sends (ALIVEE + 1,¢) to i
within 3 times after each reception of (ALIVEg).

3. Each (ALIVEEL + 1,q) message sent frornto 7 is delivered toi at mosté times after its sending thanks to the
timeliness the link frony to«.

4. i receives a message sent frgrat most one complete iteration of trepeat forevetoop after its delivrance,e.,
at most23 times after its delivrance by Observation 1.

Hence; receives an (ALIVEL + 1,q) message at least evely+ 1)6 + 3k5 + 5+ 6 + 25 timesi.e,, every3(k + 2)0 +
3(k + 1)8 times and the induction holds for the distarice 1. O

The distance from each alive process to another alive psasd®unded by, — 1 in G'. Hence:

Corollary 3 Let p and ¢ be two alive processes such that£ ¢. Starting from any configuratiom receives an
(ALIVE,—,q) message at least eveny + 3(n — 1) times.

Lemma 16 Letp be an alive process. Starting from any configuratidiives, is eventually equal to the set of all alive
processes forever.

Proof.

1. We first show thatllives, eventually only contains IDs of alive processes.

Assume, by the contradiction, that Alives, holds infinitely often while; is crashed. Ag is alive,p # ¢ and
q € OtherAlives, holds infinitely often @lives, = Other Alives, U {p}). Now, Other Alives, is periodically
settoCollect, (Line 25) andCollect, is periodically reset t (Line 27). Sog is inserted intdollect,, infinitely
often and, to that goa, receives (ALIVE,q) messages infinitely often — a contradiction by Lemma 13.

2. We now show thatllives, eventually contains the IDs of any alive process forever.

Let ¢ be an alive processes. Firstpif= ¢, then the claim trivially holds. Consider now the case wheté q.

To show the claim, we prove thate OtherAlives, eventually holds forever. From Lines 23-29, we know that
p periodically reset&ollect, to (). After p resetsCollect, (Line 27),p resetsReceiveTimer, to 0 (Line 28),
and then waits at leagtin — 3)[d/«] + 1 iterations of itsrepeat forevetoop before executin@ther Alives,

— Collect, (Line 25). Asp executes every iteration of itepeat forevefoop in at leastr times,p waits at least
(4n — 3)¢ + o times before executin@ther Alives, «— Collect,. During this periodp receives at least one
(ALIVE, —,q) message for any other alive procesby Corollary 3. So, during this periogh inserts each alive
process) # pin Collect, (Line 12). Hence, since the first execution@fher Alives, < Collect,, after the first
execution ofCollect,, — 0, OtherAlives, contains the IDs of any alive process forever.

d

Proof of Theorem 5. In Algorithm 2, each alive procegsperiodically setsLeader, to min(Alives,) (Lines 23-29).
Hence, by Lemma 16, each alive process eventually desmgtiegealive process with the smallest ID as its own leader.
As each process that is alive in the initial configuration ligeaforever, this process is the same during the whole
execution. So, it is the alive process with the smallest ID in an arbitrary agunfationry, then, in any execution starting
from v, every alive procesg eventually satisfiedeader, = [forever and the theorem holds.

C Proof of Theorem 6

In the following, we denote byar; the value ofvar, at timet. We also denote bl the timely bi-source of the system.
Definition 5 We say that a procegsstartsRoundk at timet if p executesStart Round(k) at timet¢. We say that a
process is in Roundk at timet if Round, = k at timet. We say that a procegstimes outon Roundk at timet if
Round, = k A\ ReceiveTimer, > 8[d/a| whenp executes Line 27 at time

Lemma 17 Starting from any configuratiorjk € IN such that: if some process starts a round greater thathen
some process previously times out on roénd

17

Proof. Starting from any configuration, since all alive processagetbegun thei2"? repeat forevetoop iteration,

we are sure that an alive process executes Line 29 only afteneés out. So, let be the first time after which all
alive processes have begun th&if' repeat foreveloop iteration. Letk be the maximal round value in the network
(considering messages and processes). Any round ¥aluek appears in the network only when at least one process
times out ont’ — 1. The lemma is then proven through a simple induction argamen O

Corollary 4 Starting from any configuratiork € IN such thatvk’ > k, if a process starts Round + 1, then some
process previously started Roukd

Lemma 18 Starting from any configuration, if an alive procgssontinuously satisfieRound,, mod n+ 1 = p during
the period[t, t + 6 + (3], thenp sends at least one (ALIVEound;) message to any other process during this period.

Proof. Similar to the proof of Lemma 8, page 15. O

Lemma 19 Processes start finitely many rounds.

Proof. Assume, by the contradiction, that some progessarts infinitely many rounds. Then, by Lemma 17 and
Corollary 4,3k € IN such thatvk’ > k, some process starts Roukidand some process times out on Round

Consider the time, where the round valuk appears in the system. Consider now any timsuch that, > ¢;. Let
L be the largest value sent by timgin any message. Ldt’ be the first value greater thansuch thatl’ mod n = b.
Let ¢, be the earliest time when some procgssnes out on Round,’ — 1. By Lemma 17, (1) a process can only start
RoundL’ after timets. Now, t> > t; by definition of L’, and thus procegsis alive, so it not only times out on Round
L’ — 1 but it also starts Roundl’ and two cases are possible:

1. p =b. Then,p sends (ALIVEL') to all other processes before timtie+ § (before the end of the loop iteration).

2. p # b. In this casep sends (START,’) to b before timet, + 3 (before the end of the current loop iteration).
This message is delivered toat mosto times later. Sop receives such a message at mbst 25 times later
by Observation 1 (page 13)e., at most at time, + § + 33. Finally, during the loop iteration where it receives
(START,L'), i.e. during]ts,t2 + § + 4], b starts Round.’” and sends (ALIVEL') to all other processes.

Hence, in the worst case, (2) any alive process differerit isf guaranteed to receive the first (ALIVE) by time

to + 26 + 60 (t2 + 0 + 45 plus g times for the delivrance angls times for the reception after the delivrance) and,
henceforth, another such a message at least @dety 35 times while L’ has not been timed out on (by Lemma 18,
while L’ has not been timed out ohsends (ALIVEL') everyd + 3 times and, similary to the previous cases, such a
message is receivedd4- 23 times after its sending). To time out on Rouh{ a process must have startétdand must
failed to receive a message frdrfor more tharg8[5/«] complete loop iterationsge., for more thar8d times. Therefore,
through a simple induction argument, (1) and (2) implies titaprocess ever times out di. This contradicts the fact
that every round is started and timed out. O

Let K be the largest round started by any alive process and ket K mod n.

Lemma 20 P sends an infinite number of (ALIVEE) messages to all others alive processes.

Proof. Letp an alive process that is in Roudd. If P only sends a finite number of (ALIVIK)) messages tp, then
p eventually starts a round larger th&h— a contradiction. O

Lemma 21 There is a time after which, for every alive procesd.eader, = P.

Proof. Immediate from the definition ok and Lemma 20. O

Corollary 5 There is a time after which onliy sends messages.

Proof of Theorem 6.Immediate from Lemma 21 and Corollary 5.

18

D Proof of Theorem 8
In the following, we denote byarfj the value ofvar, at timet. Also, we denote by the timely source of the system.

Lemma 22 Starting from any configuration, for every alive procesand every procesg such thatg # p: if ¢ €
Actives,, holds infinitely often, thep receives ALIVE messages frgmnfinitely often.

Proof. Letp andgq be two processes such thais alive andy # p. Assume thay € Actives, holds infinitely often.
As q # p, g € OtherAlives, also holds infinitely often (Line 8). A®ther Actives, is periodically reset t@’ollect,,
(Line 32),q € Collect, holds infinitely often. Now('ollect,, is periodically reset t@) (Line 41). Sog is inserted into
Collect,, infinitely often. To that goalyp must receive ALIVE message frogrinfinitely often (Lines 12-16). O

Observation 6 For every procesg, Counter,[p] and Phase,[p] are monotonically nondecreasing with time.

Lemma 23 Letp andq be two distinct processes. Starting from any configuraifomreceives ALIVE messages from
q infinitely often, thery is alive and, for every time, there is a time after whiclWounter,[q] > Counter[q] and
Phasey[q] > Phasel[q] forever.

Proof. Letp andq be two processes such that# ¢q. Assume thap receives ALIVE messages frominfinitely
often. As the number of messages initially in the lirkpj is finite, p eventually only receives messages that have
been sent by;. So, ¢ sends such messages infinitely often and, as a consequgixalive. Consider now any
time t. As every message in the linlg,p) is eventually received or lost, there is a tintie> ¢ from which p only
receives fromy ALIVE messages that have been sentdogfter timet. Now, any (ALIVE gent,gph) message sent
by ¢ to p after timet satisfiesyent > Counterl[q] andgph > Phasel [q] because&ounter,[q] and Phase,[p] are
monotonically nondecreasing (Observation 6). Thus, ftGm only receives fromy (ALIVE, v,w) messages such that
v > Counterl|q] andw > Phasel[q]. Now, each time receives such an (ALIVE,w) message from, Counter,|[q]

is set tov andPhase,q] is set tow (Lines 12-16) and this is the only way thatan modifyCounter,[g] or Phasep[q].
Hence Countery[q] > Counter[q] and Phase,|q] > Phasel[q] eventually hold forever. O

Lemma 24 Starting from any configuration, for every alive procgsand every process, if ¢ € Actives, holds
infinitely often, theny is alive and, for every time, there is a time after whiclounter,[q] > Counterf[q] and
Phasep|q] > Phasel [q] forever.

Proof. Assume thap = ¢. In this case, the lemma holds becapss alive andCounter,[p] and Phase,[p] are
monotically nondecreasing by Observation 6. Assume nowithé q. If ¢ € Actives, holds infinitely often, then by
Lemma 22p receives ALIVE messages frogiinfinitely often and the lemma holds by Lemma 23. O

Lemma 25 For every alive processandg, if p sends a message of typeo ¢ infinitely often, thery receives a message
of typeT from ¢ infinitely often.

Proof. Since the link(p,q) is fair, the lemma is trivial. O

Starting from any configuration, since the second iteratibtne repeat forevetoop begins (after at mogt times), we
are sure that any procegssends ALIVE (Line 26) only if the test of Line 25 is truieg., only if Leader, = p. Hence:

Observation 7 Starting from any configuration, a procegsends ALIVE at a time> 3 only if Leader,=p at timet.

Starting from any configuration, since the second iteratibtne repeat forevetoop begins (after at mogt times), we
are sure that any process executes Line 37 only if it prelyaecutes Line 36. Hence, follows:

Observation 8 Starting from any configuration, any procgsswitchesLeader, fromp to g # p at a timet > [only
if OldLeader, = p at timet.

Lemma 26 For every procesp # s and everyk > 0, if s sends (ALIVE; k) to p at some time > 3, then:
- s sends another (ALIVE, k) message tp during time interval¢,t + § + /3], or
- Phases[s] > k holds attime + § + (.

Proof. First, s satisfiesLeaders = s at timet by Observation 7. Ther;, = Phase;[s]* (Line 26). Consider now the
two following cases:

19

- Assume that switchesLeader; from s to g # s atatimet’ €]t,t+] (Line 37). Theng satisfiedDidLeaders =
s at timet’ by Observation 8 and, so, incremertdase;[s] (Line 39) before the end of the currergpeat
foreverloop iteration,.e., before timet’ 4+ 5. Now, ast’ €]t,t + 6] and Phase,[s] is monotically nondecreasing
(Observation 6), the lemma holds in this case.

- Assume thas continuously satisfiebeader; = s during the time intervdk,t+6]. Then, as sends (ALIVE- k)
to p at timet (Line 26),s resetsSendT'imers to O (Line 28) before the beginning of the negpeat forevetoop
iteration. So, when the program countersgboints out to the first instruction of threpeat forevetoop at a time
t’ such that < ¢’ <t + 3, SendTimers = 0. Fromt’, s executes a complete loop iteration at most evéry
times. So, after executing /3] — 1 complete iterations; points out to the first intruction of the loop at a time
t" < t+ 46, SendTimers = [6/8] — 1 (SendT'imer, is incremented at each loop iteration), andan still
execute a complete iteration of the loop in the time intef#/at + 6 + 5]. During this loop iterations increments
SendT'imer, to |§/3] (Line 23) and, as satisfies the test of Lines 24 and 25sends another alive message
to p (Line 26) before the end of the iteratioire., before timet + § + 3. As s points out to Line 26 at timeé (s
sends ALIVE top at timet) ands continuously satisfieSeader, = s during the time intervalt,t + d], s does not
incrementsPhase;[s] during]t,t + & + 5]. So, whens sends another ALIVE messagetauring time interval
|t,t+0+ 3], Phases[s] = Phases[s|' and, as a consequence, the message is of the following fAilVE, — k)
and the lemma also holds in this case.

As all the output links ok are timely, we can deduce the following:

Observation 9 If s sends a message to another procesp at some time, thenm is delivered tg from s at most at
timet + 6.

Assume that a messageis delivered to a procegs Then,p receives a message of the same typenat most one
complete iteration of itsepeat forevetoop after the delivrance oh. Hence, by Observations 1 (page 13) and 9:

Lemma 27 Starting from any configuration, ¥ sends ALIVE to another procegsat timet, thenp receives at least
one ALIVE message frosduring the time intervall¢, t + 6 + 20].

Lemma 28 Counter[s] is bounded.

Proof. Assume, by the contradiction, th@ounter[s] is unbounded. Thers; executes Line 19 of the algorithm
infinitely often. From Lines 17-18, we can then deduce thatfttlowing situation appears infinitely often:receives
an (ACCUSATIONph) message from a procegsat some timet with ph = Phaseg[s]’. As the number message
initially in the link (p,s) is finite, we can then deduce thasends such messages infinitely often.

p sends ACCUSATION messagesdanfinitely often only if Leader, = s A Leader, ¢ Actives, holds infinitely
often. Now, Leader, is periodically set to a process ictives, (Line 37). So, (1)s is inserted inActives,, (2)
Leader, is set tos, and (3)s removed fromActives,, infinitely often. By (1), Lemma 22, and the fact that the numbe
of messages initially in the links(p) is finite, we can deduce thatreceives infinitely often ALIVE messages sentdy

p updatesictives, by settingOther Actives, to Collect, (Line 32). After eactdctives,’'s update (Line 32):

- p sends an ACCUSATION messagestLine 34) if Leader, = s A Leader, ¢ Actives, (Line 33-35),
- p chooses a leader iActives, (Line 37), and
- presetollect, to (), andReceiveTimer, to 0 (Lines 41-42).

Then,p waits at least[d/a’] complete loop iterations.e., at leastd times to make the nexctives,’s update.
Consider now the time from whichp only receives froms ALIVE messages that was effectively sentbfsuch a

time exists because each message in transit in thédink is eventually received or lost). From tings is inserted into

Collect, each timep receives an ALIVE message sentfyAs p receives an ALIVE message sentbinfinitely often,

p sends ACCUSATION messages 4mnly if the following situation appears infinitely ofteni receives an ALIVE

message sent byand, then, receives no ALIVE message fremuring at leastd times. By Lemma 26, two cases are

then possible for each (ALIVE;,k) message sent byto p at timet’ > ¢:

() s sends another (ALIVE;,k) message tp during time intervalt’,t’ + § + f].
(b) Phases[s] > k holds at timet’ + § + (.

Let us now study the two following cases:

20

- There is a timeg, > t from which Case (a) is always verifiede., fromt¢,, s sends (ALIVE;-,k) to p at most
everyd + g times. Then, by Lemma 27, we can conclude fhedceives an ALIVE message frograt least every
20 + 3p times. Soys is eventually inserted int@ollect, at least once during each period®f times and, as a
consequence, € Actives, eventually holds forever. Thus, we can conclude theentually no more sends any
accusation ta and, soCounter,[s] is eventually no more incremented — a contradiction.

- Case (b) is verified infinitely often. Then, from timgp must receive an ALIVE message sent ognd, then,
receive no message during at lea&in order to send an ACCUSATION messagestcConsider any time,. > ¢.
Assume thati) p receives at time,. a messagen = (ALIVE, —,k) sent bys at timet, < ¢, and(i:) p does not
receive any ALIVE message fromduring the time intervalt,.,t,. + 56]. Then, by Lemma 27, if sends another
(ALIVE, — k) message durinfs .t + 0 + 3], p receives the message before timet+ 5§ — a contradiction.
So, Case (b) is verified and, &hase,[s] is monatically nondecreasinghase;[s] > k holds forever from time
ts 4+ + 0. After receivingm, Phasep[s] is set tok. So, the ACCUSATION messages provoked bymis of the
following form: (ACCUSATION). Now, asmy is sent after time,. + 56, Phases[s] > k holds whers receives
my4 and, as a consequener, does not provoke any incrementation@bunters[s]. Thus, as we considey.
as any value greater or equal tothis means that eventually no ACCUSATION message recdieed p can
provoke any incrementation @founter,[s] — a contradiction.

Hence, in any casé€/ounter,[s] is incremented only a finite number of times — a contradiction |

Definition 6 For each processp, let ¢, be the largest value af'ounter,[p] in the execution that we consider,(= oo
if Counter,[p] is unbounded). Ldtbe the process such thai {) = min{(c,,p): p is an alive process

By Definition, [is an alive process. Furthermore, by Lemmac4 Xk oo, S0,¢; < o0, i.e,, Counter;[l] is bounded.

Lemma 29 Starting from any configuration, for every alive procesg there is a time after whiche Actives, forever,
then there is a time after whicheader, = [forever.

Proof. Assume, by the contradiction, there is an alive progetsat satisfied.eader, # [infinitely often despite

[€ Actives, eventually holds forever. Then, dsader, is periodically set to a process ictives, (Line 37), this
means that there is a process: | such thayy € Actives, andLeader, = g infinitely often.l € Actives, eventually
holds forever implies thap receives ALIVE messages frominfinitely often. As the number of ALIVE messages
initially in the link (I,p) is finite, p eventually only receives frothALIVE messages that effectively sends, also, as
Counter[l] is bounded and monotically nondecreasing (Observatiop 6yentually only receives ALIVE messages
from{ of the form (ALIVE ;) and, as a consequenc&unter,[l] = ¢; eventually holds forever. Consider now the two
following cases:

1. Counter,[q] is bounded. In this case, < co and, so, there is a timewhenCounter} [q] = c,. By Lemma 24,
there is a time after whict'ounter,[q] > Counter}[q] forever,i.e,, Countery[q] > ¢, eventually holds forever.
Now, by definition ofl, we have ¢,l) < (cq,9)- So, there is a time whichClounter,[l],l) < (Counter,[q].q)
forever, and from the way thatperiodically setd eader, (Line 37) — we obtain a contradiction.

2. Countery[g] is unbounded. Then, by Lemma 2@punter,[q] is also unbounded. So, there is a time which
(Counterpll].l) < (Countery|g],q) forever — we also obtain a contradition.

Lemma 30 Starting from any configuration, there is a time after whickuder; = [forever.

Proof. By definition,l € Actives; (Line 8). So, the result follows from Lemma 29. O

Corollary 6 Starting from any configuration, there is a time after whiRhase,[!] stops changing.

Proof. [changesPhase;[l] infinitely often only ifl switchesLeader; from [to a procesg # [infinitely often (Lines
36-40). Hence, the resultimmediatly holds from Lemma 30. O

Definition 7 Letiphase be the final value oPhase;[l].

Note that sincePhase;[l] is monotically nondecreasingphase is also the largest value dthase;[l].

21

Lemma 31 Starting from any configuration, for every alive processhere is a time after whiche Actives,, forever.

Proof. Letp be any alive process. if = [, then the lemma is trivially verified. Assume now tha# [. By Lemma
30 and the definition diphase, [sends (ALIVE;-,iphase) messages tp infinitely often and these are the only type of
ALIVE message that sends tg infinitely often. By Lemma 25p receives (ALIVE;-,Iphase) from [infinitely often.
Therefore, (*) there is a time after whidRhase,[l] = Iphase holds forever. Moreovep adds! to Actives,, infinitely
often. We now show that removeg from Actives,, only finitely often, and so the lemma holds. To that goal, assu
by the contradiction, thai removes from Actives, infinitely often. Thenp sends (ACCUSATION;) messages tb
infinitely often. By Lemma 25| receives (ACCUSATION;) messages from infinitely often. By (*), there is a time
after which the only (ACCUSATION;) messages thai sends td are of the form (ACCUSATIONphase). Thus,l
receives (ACCUSATIONphase) messages frominfinitely often andCounter;[l] is unbounded — a contradictiom.

By Lemmas 29 and 31, we have:
Lemma 32 Starting from any configuration, for every alive processhere is a time after whiclheader, = [forever.

Lemma 33 Starting from any configuration, there is a time after whicthyd sends messages.

Proof. There are only two types of messages in Algorithm 4: ALIVE &@CUSATION. By Lemmas 31 and 32,
the test of Line 33 is eventually no more satisfied by any girgeess. As a consequence, there is a time after which
no ACCUSATION message are sent. Consider now the ALIVE ngessaFrom Line 25 of the algorithm, we know
that only the alive processedhat satisfyLeader, = p infinitely often can send ALIVE messages infinitely often. By
Lemma 32, there is a time after which only one alive progesatisfy Leader, = p infinitely often: Process Hence,
eventually only one procesk,sends messages (namely, ALIVE) and the lemma is proven. O

Proof of Theorem 8. Immediate from Lemmas 32 and 33.

E Pseudo-Stabilizing Leader Election inS;

Algorithm 5 implements a pseudo-stabilizing but non comication-efficient leader election in any systéin Below,
its correctness proof. Below, we naier}, the value ofvar, at timet ands the timely source of the system.

Lemma 34 Starting from any configuration, for every alive procesand every procesg such thaty # p: if ¢ €
Alives, holds infinitely often, thep receives ALIVE messages frgnnfinitely often.

Proof. Similar to the proof of Lemma 22, page 19. a

Observation 10 For every procesp, Counter,[p] is monotonically nondecreasing with time.

Lemma 35 Letp andq be two distinct processes. Starting from any configuraifomreceives ALIVE messages from
q infinitely often, thery is alive and, for every time, there is a time after whict'ounter,[q] > Counter}[q] forever.

Proof. Similar to the proof of Lemma 23, page 19. O

Lemma 36 Starting from any configuration, for every alive procgssd every process if ¢ € Alives, holds infinitely
often, theny is alive and, for every timg there is a time after whict'ounter,[q] > Counter}[q] forever.

Proof. Similar to the proof of Lemma 24, page 19. O

Lemma 37 Starting from any configuration, ¥ (the source) sends ALIVE to another procest timet, thens sends
another ALIVE message toduring the time intervallt, ¢ + ¢ + 3].

Proof. Assume that sends ALIVE to another procepsat timet. Just after sending ALIVE tp (Line 26), s resets its
timer SendTimer, to O (Line 27) in the sameepeat forevetoop iteration. The program counter ethen points out
to the first instruction of the loop at a timésuch that < ¢’ <t + 8. Fromt’, s then executes a complete iteration of
the loop at most everg times. Now, from¢’, while SendTimers < |§/3], SendTimer, is incremented at each loop
iteration. So, the tesfendTimer, > |5/3) becomes true during the/3|*" loop iteration from¢’ and, thens sends
ALIVE to p in the same loop iteration (Lines 24-28). Hence, frdms sends ALIVE top in at most|d/3] x g times,
i.e, in at most times. Ast’ <t + 3, the lemma is proven. O

As all the output links of are timely, we can deduce the following:

22

Algorithm 5 Pseudo-Stabilizing Leader Election 6n

CODE FOR EACH PROCES®:

1: variables:

Leader, € {1,..n}

SendTimer,, ReceiveTimer,: non-negative integers

LocalLeadery[1...n], Local Leader Countery[l...n], Countery[1...n]: arrays of non-negative integers /* to manage the accusatiorg
Collect,, Other Alives): sets of non-negative integers /« these sets are used to compute thetives,, setx/

macros: /* these macros are just used to simplify the cede
Alivesp, = Other Alives, U {p}
MyLocalLeadery, = r such that Countery [r],r) = min{(Countery,|q],q) : ¢ € Alives,}
10: MyLeader, =l suchthat Local LeaderCounterpy[l],Local Leader[l]) = min{(Local LeaderCountery[q],Local Leader[q]) : ¢ € Alivesp}

12: repeat forever
13: forall g € V \ {p} do

14: if receive(ACCUSATION) fromy then /* each timep receives an ACCUSATIONy increments its accusation countef
15: Countery[p] < Counterp[p] + 1

16: end if

17: if receive(ALIVEy,rent,qent) from g then /* we also use the ALIVE messages to carry some informatighs

18: Collect,, « Collect, U {q}

19: Countery[q] < gent

20: LocalLeadery[q] < T

21: LocalLeaderCountery[q] < rent

22: end if

23: endfor

24: SendTimer, «— SendTimer, + 1
25: if SendTimer, > |§/3] then /* p periodically sends ALIVE to each other/

26: send(ALIVE,Local Leadery[p],Countery[Local Leadery[p]],Countery, [p]) to every process except
27: SendTimer, «— 0

28: endif

29: ReceiveTimery, «— ReceiveTimer, + 1

30: if ReceiveTimer, > 5[6/a] then

31: Other Alives, «— Collect,

32: forall ¢ € V \ Alives, do /* p periodically accuses the processes it suspeftts

33: send(ACCUSATION) tay

34: end for

35: LocalLeadery[p] < MyLocalLeader,, /* p periodically evaluates its local leadey
36: LocalLeaderCountery[p] < Countery|[Local Leadery[p]]

37: Leader, «— MyLeader, /* p periodically evaluates its global leadef

38: Collect, — 0

39: ReceiveTimer, «— 0

40: endif

41: end repeat

Observation 11 If s sendsn to a proces® # s at timet, thenm is delivered tag from s at most at time + 4.

Assume that a messageis delivered to a procegs Then,p receives a message of the same typenaft most one
complete iteration of itsepeat forevedoop after the delivrance ah. Hence, by Observations 1 (page 13) and 11,
follows:

Lemma 38 Starting from any configuration, ¥ sends ALIVE to another procegsat timet, thenp receives at least
one ALIVE message froeduring the time intervall¢, t + 6 + 20].

Lemma 39 Starting from any configuration, for every alive procesg s, p receives ALIVE messages frenat least
every2) + 3 times.

Proof. Starting from any configuration, the program countersgfoints out to the first instruction of itepeat
foreverloop at a timet such thatt < 3. Fromt, s then executes a complete iteration of the loop at most egery
times and, whileSendTimer, < |6/3], SendTimer, is incremented at each loop iteration. SoSasdTimer; is a
non-negative integer, the teStndTimers > |3/3] becomes true at the lattest during lée/ 3] " loop iteration from

t and, theng sends ALIVE top in the same loop iteration (Lines 24-28). Hence, from theéahconfiguration,s sends
ALIVE to p at most attime + |§/3] x 0, i.e, at most at tim& + (3. After this sendings periodically sends ALIVE
messages tp within periods of at most + 3 times, by Lemma 37. Hence, starting from any configuratiosends
ALIVE messages tp at most every + (times and, by Lemma 38, the lemma holds. O

Lemma 40 For every alive process, there is a time after whickh € Alives, forever.

Proof. First, the lemma trivially holds fop = s. Consider now the case whepe# s. There is a time after which
s € Alives), forever if and only if there is a time after whighe OtherAlives,, forever. By Lines 29-40, we know that
OtherAlives, is periodically reset t@'ollect,, and, after thatCollect,, is reset td). After such resets) waits5[d/«]|
complete iterations of iteepeat forevetoop before executin@ther Alives, «— Collect, again. As each loop iteration
is executed in at least times, this means thatwaits at leasto times before executin@ther Alives, < Collect,

23

again. During this periog; receives at least one ALIVE message frefoy Lemma 39. So, during this periogjnserts
s in Collect, (Lines 17-18). Hence, whenexecute®ther Alives, < Collect, again,s € Collecty,. O

Lemma 41 Counters[s] is bounded.

Proof. Assume, by the contradiction, th@unter;[s] increases infinitely often. S, receives ACCUSATION
messages infinitely often (Lines 14-16). As the number ofsagss initially in the links is finite, there is at least one
alive proces® # s that accuses infinitely often. Now,p only sends ACCUSATION messages to procegsasch that

q € V'\ Alives, (Lines 32-34) and € Alives, eventually holds forever by Lemma 40 — a contradiction. O

Definition 8 For each processp, let ¢, be the largest value af'ounter,[p] in the execution that we considet,(= oo
if Counter,[p] is unbounded). Ldtbe the process such thai; {) = min{(c,,p): p is an alive process

By Definition, [is an alive process. Furthermore, by Lemmadls oo, S0,¢; < o0, i.e., Counter;[l] is bounded.

Lemma 42 Letp andq be two alive processes. Starting from any configurationfwieefollowing propositions holds:
(@) if ¢ € Alives, infinitely often andt, < oo, then there is a time after whialounter,[q] = ¢, forever.
(b) if ¢ € Alives, infinitely often and:, = oo, then there is a time after whiadllounter,[q] > ¢, forever.

Proof. First, if p = ¢, then (a) holds becauggounter,[q] is monotically nondecreasing by Observation 10. Then, if
p = ¢, then (b) holds becauseounter,[q] is monotically nondecreasing angis bounded (by definition).

Consider now the case whepe# ¢. In the two cases (a) and (h),receives ALIVE fromgq infinitely often by
Lemma 34.

(a) Assume now that, < co. In this caseCounter,[q] is bounded and monotically nondecreasing (Observation
10). So, there is a time after whichCounter,[q] = ¢, forever. Then, as every message in the l{glp) is
eventually received or lost, there is a titie> t after whichp only receives fromy ALIVE messages that have
been sent by after timet and all these messages are of the following form: (ALIME:,c,). Now, each time
receives such an (ALIVE;,—,c,) messagep setsCountery[q] to ¢, (Lines 17-22) and, this is the only way that
p can updat&ountery[q]. Hence, there is a time after whictounter,[q] = ¢, forever.

(b) Assume that, = co. In this caseCounter,[q] is unbounded. Then, we already know tid&dunter;[l] is
bounded. So, there is a time after whi€lounter,[q] > Counter;[l] forever (remember thaf'ounter,[q] and
Counter;[l] are monotically nondecreasing by Observation 10). Theegfoy Lemma 36, there is a time after
which Counter,[g] > Countery[q] > Counter[l] forever. Now,Counter[l] is eventually equals te, forever
becaus&'ounter;[l] is monotically nondecreasing. Hence, there is a time aftécCounter,[q] > ¢; forever.

a

As Local Leader,[p] is periodically set to a procegssuch thay € Alives,, we have the following corollary:

Corollary 7 Letp andq be two alive processes. Starting from any configurationtwiefollowing propositions holds:
(@) if Local Leader,[p] = q infinitely often and:, < oo, then there is a time after whidHounter,[q] = ¢, forever.

(b) if Local Leader,[p] = q infinitely often and:, = o, then there is a time after whidHounter,[q] > ¢; forever.

Lemma 43 Letp be an alive process. Letbe a process. Assume that Alives, and Local Leader,[q] = r holds
infinitely often. The two following propositions hold:

(a) There is a time after whichlpcal Leader,[q] = r) = (Local LeaderCounterylq] = ¢,) holds each time sets
Leader, to MyLeaderp, if ¢, < c0,.

(b) There is a time after whichLpcal Leadery[q] = r) = (Local LeaderCounter,[q] > ¢;) holds each time sets
Leader, to MyLeaderp, if ¢, = oco.

Proof. Assume thay = p. Then, by Corollary 7, there is a time after which:
- Counterp[r] = ¢, forever, ifc, < co

- Counterp[r] > ¢ forever, ifc, = oo

24

So, the lemma holds becauseperiodically executes the following sequenge:updatesLocal Leader,[p], resets
Local LeaderCounter,[p] to Countery,|Local Leader,[p]], and then set&eader, to MyLeader, (Lines 35-37).

Consider now the case whege# p. Then, by Lemmas 34 and 3p,receives ALIVE messages frominfinitely
often andg is alive. As the number of messages initially in the lifakp) is finite, p eventually only receives from
ALIVE messages sent by, Each ALIVE message sent layat timet is of the following form: (ALIVE p,vent,qent)
wherew is the value ofLocal Leader,|[q] at timet anduvcnt is the value ol ounter,[Local Leader,|q]] at timet. When
receiving such a messagesetsLocal Leader,[q] to v andLocal Leader Counter,[q] to vent in sequel (Lines 20-21).
Moreover, this is the only way to modijocal Leader,[q] andLocal LeaderCountery|q]. Thus,Local Leadery[q] = r
holds infinitely often implies thaLocal Leader,[q] = r holds infinitely often and, by Corollary 7:

- if ¢, < 00, thenCounter,[r] = ¢, eventually holds forever.
- if ¢, = 00, thenCounter,[r] > ¢; eventually holds forever.

So, ife, < oo, thenp eventually only receives from (ALIVE, v,vent,qent) messages that satisfy the condition=
r) = (vent = ¢,). At each reception of such messagesetsLocal Leadery[q] to r and Local LeaderCounterp|q]
to ¢, in sequel. So, eventually each timesetsLeader, to MyLeader,, we haveLocal LeaderCountery[q] = ¢, if
Local Leadery[q] = r and Part (a) of the lemma is proven.

Finally, if ¢, = oo, thenp eventually only receives from (ALIVE, v,uent,qent) messages that satisfy the condition
(v =r) = (vent > ¢). Ateach reception of such messagesetsLocal Leadery[q] tor andLocal LeaderCountery|q]
to ¢, in sequel. So, eventually each timesetsLeader, to MyLeader,, we haveLocal LeaderCountery[q] > ¢, if
Local Leadery[q] = r and Part (b) of the lemma is proven. O

Lemma 44 Starting from any configuration, for every alive proces# there is a time after whiche Alives, forever,
then there is a time after whichocal Leader,[p] = [forever.

Proof. Letp be any alive process. Assume, by the contradiction, thaétisea time after whicl € Alives, forever
but Local Leadery[p] # 1 holds infinitely often. Then, by Lemma 42, there is a time rafthich Countery[l] = ¢
forever (; < 00). Also, there is a processsuch thatLocal Leader,[p] = ¢ infinitely often and two cases are possible:

(1) ¢4 < 0. Inthis case, there is a time after whi€lvunter,[q] = ¢, forever by Corollary 7. Now, a€'ountery|[l]
= ¢; eventually holds forever, there is a time after whi€to@inter, [1],l) < (Counter,[q],q) forever. Hence, there
is a time after whichiLocal Leader,[p] # q forever — a contradiction.

(2) ¢4 = 0. Inthis case, there is a time after whi€ounter,[q] > ¢, forever by Corollary 7. Now, a€'ounter,[l] =
¢; eventually holds forever, there is a time after whictv@inter,[l].l) < (Counter,[q].q) forever. Hence, there
is a time after whiciLocal Leader,[p] # ¢ forever — a contradiction.

Definition 9 Let Local Leaders(p) = { Local Leader,|q] : ¢ € Alivesy}.

Lemma 45 Starting from any configuration, for every alive processf there is a time after whiclh € LocalLea-
ders(p) forever, then there is a time after whidleader, = [forever.

Proof. Assume that there is a time after whitke LocalLeaders(p) forever. Then, as € Local Leaders(p) holds
infinitely often andLocal Leaders(p) = { Local Leadery|q] : ¢ € Alives,}, there is a subset of procesdéssuch that:

1. Vq € V', q € Alives, andLocal Leader,[q] = [holds infinitely often.
Also, as there is a timeafter whichl € Local Leaders(p) forever, we have the following additionnal property:
2. Vt' > t,3qv € V' such thayy € Alives, andLocal Leader,[q./] = | at timet’.

By 1. and Lemma 43, there is a time after whigh € V', (Local Leader,|q] = 1) = (Local LeaderCountery|q] =
¢1)) each timep setsLeadery, to MyLeader,. Then, by 2., there is a timesuch that ifp setsLeader, to MyLeadery,
atatimet’ > ¢, then there exists a procegs € V' such thatLocal Leadery|gy] = | and Local LeaderCounterp[gy]
= ¢ attimet’.

Assume now, by the contradiction, thetader, # [infinitely often. Then, ad.eader, is periodically set tal/y-
Leadery, (Line 37), the following situation appears infinitely oftgnsetsLeader, to My Leader, while there exists two
processes andr such that € Alives,, Local Leader,[v] = r, and Local LeaderCountery|v],Local Leader,[v]) <
(c1,0). Two case are then possible:

25

- ¢, < o0. Then, there is a time after which the conditidw¢al Leader,[v] = r) = (Local LeaderCounter,[v] =
¢r) holds each time setsLeader, to MyLeader,, by Part (a) of Lemma 43. Now, by Definition,(r) > (c;,!).
So, (Local LeaderCounterp[v],Local Leadery[v]) > (c;,l) eventually holds each time setsLeader, to My-
Leader, while v € Alives, and Local Leadery[v] = r — a contradiction.

- ¢, = o00. Then, there is a time after which the conditidiw¢al Leadery[v] = r) = (Local LeaderCountery|v] >
¢1) holds each time setsLeader, to MyLeader, by Part (b) of Lemma 43. SoLpcal LeaderCountery|v],Lo-
cal Leader,[v]) > (c;,l) eventually holds each time sets Leader, to MyLeader, while v € Alives, and
Local Leader,|v] = r — a contradiction.

We now proceed to show that for every alive procesisere is a time after whiche Local Leaders(p).

Lemma 46 Starting from any configuration, there is a time after which Alives, forever.

Proof. If | = s, then the lemma trivially holds. Assume now thig£ s. There are three possible cases: (1) there is
a time after whichl € Alives, forever, (2)l is added and removed frorhlives, infinitely often, or (3) there is a time
after whichl ¢ Alives, forever. We now show that Cases (2) and (3) cannot occur.

In case (2)] is removed fromAlivess each timel was isAlivess but not inCollects ands setsOther Alives,
to Collect, (Line 31). In this cases sends an ACCUSATION messageltfl ine 32-34). Sos sends ACCUSATION
messages tbinfinitely often.

In case (3), as there is a time after whicll Alives, forever and as periodically sends ACCUSATION messages
to every procesg such thay € V' \ Alives,, s sends ACCUSATION messagesitmfinitely often.

So, in both Cases (2) and (3),sends ACCUSATION messagesitinfinitely often. Now, since the output links
of s are timely and tries to receives ACCUSATION messages frermfinitely often (exactly once byepeat forever
loop iteration),l receives ACCUSATION messages fromnfinitely often. Thus] incrementsCounter;[l] infinitely
often and, a€'ounter;[l] is monotonically nondecreasing (Observation I)unter;[l] unbounded — a contradiction.
Hence, only Case (1) is possible. O

Lemma 47 Starting from any configuration, there is a time after whiabcal Leader;[s] = [forever.

Proof. Immediate from Lemmas 44 and 46. |

Lemma 48 Starting from any configuration, for every alive procesd.ocal Leader,[s] = I eventually holds forever.

Proof. Letp be an alive process. Hf = s, then the result is immediate from Lemma 47. Assume nowjhats. In
this casep receives ALIVE messages froginfinitely often by Lemma 39. By Lemma 47, there is a titrefter which
Local Leader;[s] = l. So, after timg, all the ALIVE messages thatsends tg are of the form (ALIVE],—,—). Thus,
there is a time after which all the ALIVE messages thatceives frons are of the form (ALIVE],—,—). So, there is a
time after whichLocal Leader,[s] = [forever. O

Corollary 8 Starting from any configuration, each alive processventually satisfiesc Local Leaders(p) forever.

Proof. Immediate from Lemmas 40, 48, and Definition 9. O

Lemma 49 Starting from any configuration, for every alive procgsshere is a time after whiclheader, = [forever.

Proof. Immediate from Corollary 8 and Lemma 45. a

Theorem 10 Algorithm 5 implements a pseudo-stabilizing leader etecin Systens; .

Proof. Immediate from Lemma 49 and the fact tha alive. O

26

