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ON THE BEHAVIOUR OF B AND BE STARS AT LOW METALLICITY.

C. Martayan 1,2 , Y. Frémat1 , A.-M. Hubert2, M. Floquet2 , C. Neiner2 , J. Zorec3, D. Baade4, J.
Gutiérrez-Soto2,5 , J. Fabregat5 and M. Mekkas2

Abstract. We present new results obtained with the VLT GIRAFFE for a large sample of B and Be stars
belonging to the Magellanic Clouds, i.e. at low metallicity. First, we show the effects of the metallicity of
the environment on their rotation (linear, angular, and at the ZAMS). Second, we present the analysis of
the effects of metallicity and evolution on the appearance of Be stars. We also new present results about
the proportions of Be stars to B stars. Third, by cross-correlation with large photometric surveys such as
MACHO and OGLE, we report on the detection for the first time of short-term multi-periodicity in 9 Be
stars in the Small Magellanic Cloud, which can be interpreted in terms of pulsations.

1 Introduction

The origin of the Be phenomenon has given rise to long debates. Whether it is linked to stellar evolution or
initial formation conditions remains a major issue and finally if the Be phenomenon concerns only a fraction of
B stars or all the B stars. Thus, finding out differences in the physical properties of B and Be stars populations
belonging to environments with different metallicity could provide new clues to the understanding of the Be
phenomenon.

To investigate the influence of metallicity, star-formation conditions, and stellar evolution on the Be phe-
nomenon, we have undertaken an exhaustive study of B and Be stars belonging to young clusters or to the field
of the Small and Large Magellanic Clouds (SMC and LMC), because these galaxies have a lower metallicity
(respectively Z=0.002 and Z=0.004) than the Milky Way (MW, Z=0.020). Since at low metallicity the stellar
winds and mass losses are lower than at high metallicity (see Bouret et al. 2003), thus the angular mometum
loss should be lower, and consequently, the rotational velocities are expected to be higher in the SMC and LMC
than in the MW (see Meynet & Maeder 2000).

2 Observations

To answer the questions about the metallicity effects, we studied statistically representative samples of B and
Be star populations in environments of different metallicity. The Small and Large Magellanic Clouds are the
best tools due to their low metallicity. We used the VLT GIRAFFE multi-objects spectrograph in MEDUSA
mode in the Guaranteed Time Observation programmes of the Observatoire de Paris. We first prepared the
accurate catalogue of possible targets (coordinates better than 0.3”, magnitudes) and we preselected the sources
using (V, B-V). Finally, we observed 6.3% of the B-type stars observable in the SMC GIRAFFE field and 14.3%
in the LMC GIRAFFE field, which correspond to 346 stars (131 Be, 202 B stars) in the SMC and 177 stars (47
Be, 121 B) in the LMC.
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c© Société Francaise d’Astronomie et d’Astrophysique (SF2A) 2007



2 SF2A 2007

3 Fundamental parameters

We make use of the GIRFIT least-squares procedure (Frémat et al. 2006) to derive the fundamental parameters:
effective temperature (Teff), surface gravity (log g), projected rotational velocity (V sin i), and radial velocity
(RV). This procedure fits the observations with theoretical spectra interpolated in a grid of stellar fluxes at
the metallicity of the LMC or SMC, computed with the SYNSPEC programme and from model atmospheres
calculated with TLUSTY (Hubeny & Lanz 1995, see references therein) or/and with ATLAS9 (Kurucz 1993;
Castelli et al. 1997). To derive the luminosity, mass, radius, and ages of stars from their fundamental parameters,
we interpolated in the evolutionary tracks of Schaller et al. (1992), Charbonnel et al. (1993) calculated for the
SMC and LMC metallicities and for stars without rotation.

4 Results

To study statistically the effects of the metallicity on the rotational velocities, we have to constrain the number
of freedom degrees. Here we must use sub-samples with similar ages, similar masses, and different metallicities
by categories: B or Be stars. The complete results of this section can be retrieved in Martayan et al. (2006,
2007a).

4.1 Linear rotational velocities

Merging the stars by mass-ranges, by age-ranges and by types, we obtain the results for the mean rotational
velocities in Table 1 for B stars and in Table 2 for Be stars. For comparison, we use the results from Chauville
et al. (2001) and from Zorec et al. (2005) in the Milky Way. As the distribution of the inclination angle is
certainly random, we obtain for each sub-sample the mean rotational velocities at the most probable angle, thus
the equatorial rotational velocities.

Table 1. Comparison by mass sub-samples of the mean rotational velocities in the SMC and LMC B stars. For each

sub-sample, the mean age, mean mass, mean V sin i and the number of stars (N*) are given. No result is given for massive

stars in the SMC, because of their small number.
2-5 M⊙ 5-10 M⊙

<age> <M/M⊙> <V sin i> N* <age> <M/M⊙> <V sin i> N*
SMC B stars 8.0 4.0 161 ± 20 111 8.0 6.5 155 ± 17 81
LMC B stars 7.9 4.1 144 ± 13 6 7.6 7.2 119 ± 11 87

10-12 M⊙ 12-18 M⊙

<age> <M/M⊙> <V sin i> N* <age> <M/M⊙> <V sin i> N*
SMC B stars 3 2
LMC B stars 7.3 10.7 118 ± 10 7 6.8 13.0 112 ± 10 6

Table 2. Comparison by mass sub-samples of the mean rotational velocities for the samples of Be stars in the SMC,

LMC and in the MW. For each sample, the mean age, the mean mass, the mean rotational velocity and the number of

stars are given. Note no low-mass Be star in the LMC.
2-5 M⊙ 5-10 M⊙

<age> <M/M⊙> <V sin i> N* <age> <M/M⊙> <V sin i> N*
SMC Be stars 8.0 3.7 277 ± 34 14 7.6 7.6 297 ± 25 81
LMC Be stars 0 7.5 7.7 285 ± 20 21
MW Be stars 8.1 4.4 241 ± 11 18 7.6 7.3 234 ± 14 52

10-12 M⊙ 12-18 M⊙

<age> <M/M⊙> <V sin i> N* <age> <M/M⊙> <V sin i> N*
SMC Be stars 7.4 10.8 335 ± 20 13 7.2 13.5 336 ± 40 14
LMC Be stars 7.3 11 259 ± 20 13 7.2 14.6 224 ± 30 10
MW Be stars 7.2 10.6 231 ± 16 9 6.8 14.9 278 ± 10 17

These results show clearly that:
i) Obviously Be stars rotate faster than B stars whatever the metallicity is.
ii) The lower the metallicity is, the higher the rotational velocities are, for B and Be stars (see for examples the
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categories 10-12 M⊙ and 5-10 M⊙). This result is also the first observational proof of the theoretical models
from Meynet & Maeder studies.

4.2 ZAMS rotational velocities

The interpretation of our results requires a set of rotational velocity tracks for masses between 2 and 20 M⊙, for
different metallicities corresponding to the MC and the MW, and for different initial rotational velocities at the
ZAMS. We obtain these tracks by interpolation in the models of the Geneva group. The resulting distributions
of ZAMS rotational velocities for the samples of Be stars in the SMC, LMC, and MW are shown in Fig. 1.

Fig. 1. ZAMS rotational velocities for the samples of Be stars in the SMC (blue diamonds), in the LMC (pink squares),

and in the MW (green triangles). The dashed lines correspond to the linear regressions. Their corresponding equations

and correlation coefficient are given in the upper left and lower right corners.

This figure indicates that:
i) Whatever the metallicity, the ZAMS rotational velocities of Be stars depend on their mass.
ii) Following the SMC and MW curves, the trend (the gradient) of the ZAMS rotational velocities of Be stars
could be independent of the metallicity.
iii) There is an effect of metallicity on the distributions of the ZAMS rotational velocities: the lower the metal-
licity, the higher the ZAMS rotational velocities.
iv) There is a limit for the ZAMS rotational velocities below which B stars will never become Be stars. This
limit depends on the metallicity. Thus only a fraction of B stars will become Be stars (see also Fig.8 in Martayan
et al. 2007a).

The star-formation conditions such as the duration of the accretion disk, the accretion rate, the presence of
a magnetic field could be at the origin of the different ZAMS rotational velocities at different metallicities.

4.3 Angular rotational velocities

In the same way, we examined the ratio of angular velocities to their critical angular rotational velocities
Ω/Ωc for the whole sample of B and Be stars. The results are given in Table 3. They show the effects of the
metallicity: at low metallicity, the stellar radius should be lower than at thigh metallicity. This, combined to
the fact that the linear rotational velocities are higher at low metallicity, leads to a higher Ω/Ωc ratio.

Table 3. Comparison by mass sub-samples of the percentage of the mean angular rotational velocities to its critical

angular rotational velocity for the samples of B and Be stars in the SMC, LMC and in the MW.

Z Galaxy B stars Be stars
0.020 Milky Way 35 % 80 %
0.004 Large Magellanic Cloud 37 % 85 %
0.002 Small Magellanic Cloud 58 % 95 %
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5 Stellar evolution and Be stars appearance

As in Zorec et al. (2005), we derived the evolutionary status for the Be stars in the LMC and SMC samples.
The percentages of Be stars in the first and in the second part of the Main Sequence (MS) are given in Table 4.

Table 4. Proportions in SMC, LMC, and MW of Be stars (in %) in the upper ( τ

τMS
> 0.5) and lower ( τ

τMS
≤ 0.5) MS

for masses > 12 M⊙ and ≤ 12 M⊙. MW values come from from Zorec et al. (2005).
M > 12 M⊙ M ≤ 12 M⊙

MW LMC SMC MW LMC SMC
τ

τMS
>0.5 30 100 100 65 77 94

τ

τMS
≤0.5 70 0 0 35 23 6

These results indicate that the less massive Be stars are mainly in the second part of the MS whatever the
metallicity. The more massive Be stars are mainly in the first part of the MS in the MW at the opposite of
those at low metallicity (SMC and LMC), which are all in the second part of the MS. The results could be
explained by the evolution of the angular rotational velocities at different metallicity and by the fact that Be
stars appear with at least Ω/Ωc≥ 70 %. Fig. 2 shows the evolution of the Ω/Ωc across the time for stars in
the MW and in the SMC and shows the area of existing Be stars. The complete results of this section can be
retrieved in Martayan et al. (2006, 2007a).

Fig. 2. Evolution of the Ω/Ωc ratio for 3 types of stars: 20 M⊙ (squares), 12 M⊙ (circles) and 5 M⊙ (triangles) stars in

the MW (top) and in the SMC (bottom). The stars may become Be stars if Ω/Ωc≥70% (noted with a long dashed line).

6 Photometric variability and pulsations

By cross-correlation of the GIRAFFE samples with the MACHO photometric survey, we obtained light-curves
for the main part of the stars. Then by using different methods we searched for photometric variability and
short-term periodicity in Be stars. Finally, we found 13 Be stars with short-term periodicity and 9 of them are
multi-periodic pulsators, which plaids in favour of pulsations. Moreover, the detected periods fall in the range
of SPB-type pulsating modes (from 0.40 to 1.60 days). The current theoretical models (see Pamyatnykh 1999)
do not predict the presence of pulsational instabilities in massive stars at low metallicities, i.e. in the SMC.
The complete results of this section can be retrieved in Martayan et al. (2007b).

7 Proportions of Be stars to B stars in the SMC

As the rotational velocities at low metallicity are higher than at high metallicity, it is probable that the number
of Be stars to B stars increase with decreasing metallicity. Maeder et al. (1999) found a small increase of this
ratio with decreasing metallicity but in the SMC statistics, only one open cluster was used. A large survey of
Emission Line Stars and specifically of Be stars is needed to improve the determination of the proportions of
Be stars in the Magellanic Clouds. In the following sections, we present the survey we performed and the first
results obtained.
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Fig. 3. The Small Magellanic Cloud as projected on the WFI frames used in this study.

7.1 The WFI Hα survey of the Magellanic Clouds

Observations covering much of the Small Magellanic Cloud (see Fig. 3) and the Large Magellanic Cloud have been
obtained in September 2002 with the WFI attached to the 2.2-m MPG Telescope at La Silla. The instrument
was used in its slitless spectroscopic mode. To reduce crowding, the length of the spectra was limited by means
of a filter with a bandpass of 7.4 nm centered on Hα. Unfortunately, a large part of the fields suffers from
substantial non-homogeneous defocusing, which severely reduces the contrast between stars with and without
line emission at Hα. The extraction in 2-D of the spectra was accomplished by means of the SExtractor software
Bertin & Arnouts (1996). All in all, about 1 million of the 3 millions of spectra available in the SMC part of
the survey proved usable. To recognize and distinguish emission-line stars (ELS) from other objects, we created
the ALBUM package in IDL. For more information about it, we refer the reader to Martayan et al. (2007c).
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are for the candidate emission line stars.

7.2 Results: proportions

We have investigated 85 clusters in the SMC with log(age) between 7 and 9 and E[B-V] available from the OGLE
survey For a total of 7741 stars, V, B, and I magnitudes were obtained from the OGLE database (Pietrzyński
et al. 1999). Fig. 4 displays the combined HR diagram of all clusters with the ELS marked. The results can be
compared in Fig. 5, left, to the relative frequencies of Be stars (Be/(B+Be)) in Milky Way clusters (McSwain
& Gies 2005) in order to search for any effect of the metallicity on the proportion of Be stars and on the still
unknown reason for the development of disks around these extremely rapidly rotating stars. There seems to be
a trend in that the lower the metallicity, the higher the proportion of Be stars is. This could be explained by
higher rotational velocities in the SMC than in the MW (Maeder & Meynet 2001, Martayan et al. 2007b). In
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the SMC as in the MW (Zorec & Frémat 2005, Be stars in fields) the occurrence of Be stars in the 2 galaxies
shows a maximum at B2 as shown in Fig. 5 right.

Fig. 5. Left: Proportions of Be stars to B stars by spectral types in the SMC and in the Milky Way (from McSwain &

Gies 2005). Right: Proportions of Be stars to all the Be stars per spectral types in the SMC and in the MW (Zorec &

Frémat 2005).

8 Conclusion/perspectives

We found that: the lower the metallicity is, the higher the linear, angular, and ZAMS rotational velocities are.
We also found that the progenitors of Be stars rotate faster than those of B stars, which indicate that Be stars
correspond to a a sub-group of B-type stars. The evolution and the appearance of Be stars seem also driven by
the metallicity of the environment and by the ZAMS rotational velocities. At the metallicity of the SMC, we
found several multi-periodic pulsators, while pulsations are not foreseen by the theoretical models. It seems also
that there are more Be stars at low metallicity (SMC) than in the MW. As perspectives of this work, we shall
determine the chemical abundances in slow and fast rotators (B and Be stars) at low and high metallicity and for
different stellar evolution degrees. At middle term, we shall continue the B-type star populations spectroscopic
studies in the Magellanic Clouds and in the other local group galaxies with the VLT, the ELT, and with an IR
survey at the Dome C. At long term we shall explore the First Stars (very faint metallicity) of galaxies beyond
the local group with the future multi-objects instrument of the ELT.
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Pietrzyński, G., Udalski, A., Kubiak, M. et al. 1999, AcA, 49, 521

Schaller, G., Schaerer, D., Meynet, G., Maeder, A. 1992, A&AS, 96, 269
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