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Abstract. We propose the first continuous model with long range screening

(shadowing) that described columnar growth in one space dimension, as observed in

plasma sputter deposition. It is based on a new continuous partial derivative equation

with non-linear diffusion and where the shadowing effects apply on all the different

processes.
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Plasma sputtering is a common process for film growth which often exhibits wide

columns more or less close packed separated by thin deep grooves [1, 2, 3, 4]. This

columnar growth mainly results from a shadowing instability[5, 6, 7], where the elevated

parts of the surface are more exposed to the sputtering while they shadow the incoming

particles to the lower parts. The modelization of this shadowing instability has been well

described by probabilistic Monte-Carlo methods (MC)[8, 9, 10] and also with continuous

models based on partial derivative equations (PDE)[6, 7, 11, 12, 13, 14, 15, 16] including

the seminal work of Bales and Zangwill [1]. However, both approach fail to describe

at long times the strongly nonlinear columnar microstructures observed recently (see

[2] for instance). In fact, although the continuous models gives tall and well separated

columns at early time, only few sharp peaks remain later on[6, 14, 16]. Columnar

structure using PDE has already been obtained by Gillet et al.[17] but in that case no

shadowing effect was taken into account! On the other hand, discrete approaches using

MC methods including shadowing have been developped and showed a fair description

of the columnar structure, particularly through the formation of sharp column sides.

However, these models cannot avoid the coarsening of the columnar structures showing

larger and larger plateau as time increases, in contrast with experimental observations.

The goal of this paper is to present a new continuous non-local model which includes

both non-linear shadowing and diffusion effects to simulate columnar-like growth. We

consider a two dimensional model where the one dimensional (1D) surface described by

h(x, t) is subjected to receive particles from all directions not shadowed by the surface

itself. Our starting point is deduced from the models developped initially by Bales and

Zangwill[1] and by Karunasiri et al [6]:

∂h

∂t
= RΩ(x, {h})

√

1 + (∇h)2 + ν∇2h + η (1)

where the deterministic deposition term R is multiplied by the solid angle Ω(x, {h})

which modelizes the shadowing effect as a long range screening (see figure 1). ν is the

diffusion/relaxation coefficient while η is the usual noise with zero mean < η >= 0 and

its correlation given by < η(x, t)η(x′, t′) >= 2Dδ(x, x′)δ(t, t′).

For small surface angles, we retrieve a KPZ-like equation [18] with shadowing effects

(defining λ = πR):

∂h

∂t
= ν∇2h +

λ

2
(∇h)2 + RΩ(x, {h}) + η. (2)

A complete study of these equations has shown that it is unable to reproduce

columnar shapes corresponding to experiments and MC simulations [7, 14]. Indeed,

in the most favourable situation, only broad peaks emerge instead of flat columns.

Experiments suggest thus that the diffusion should be enhanced in the region more

exposed to the flux. Moreover, we will assume that the flux also increases (greater than

for normal shadowing) on the top of the columns compared to the grooves. Although

we have no strong argument for it, we expect some point effect near the sharp edge
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Figure 1. Shadowing process : interface h(x, t) and solid angle Ω(x, {h}).

to be responsible of this process. We then propose the following stochastic differential

equation where the main ingredients are non-linear shadowing effects and diffusion :

∂h

∂t
= g(Ω(x, {h})) (R

√

1 + |∇(h)|2 + ν∇2h + η) (3)

In this equation g(Ω) is a given function of the solid angle Ω. Therefore, in order

to increase the shadowing effect and the diffusion from top to edges and bottom, g(Ω)

has to be stronger than linear, and we will take later on for the numerics g(Ω) = Ω2

. The fact that this function, which modelizes the shadowing, is in factor to the right

hand term will obviously increase the deposit rate for surfaces which are not shadowed

(mainly for large value of h) and make it smaller for shadowed one (for small value of

h). The diffusion is also affected by the shadowing in the same way.

A plane-wave analysis performed on equation (3) shows that the solutions are un-

stable for large enough wavelengths λ, i.e. λ = 2π/k > λ∗ = νπ3/(αR), with α ∼ 0.724

and the growth rate σ = kπ(2αR − νπ2k). Then, starting from a flat substrate, the

noise will trigger the instability and will drive the system into a strong non-linear regime.

Figure 2 shows the evolution of the interface profile for different times for D = 1, ν = 1

and R = 1. It exhibits the desired columnar shape. This shape is characterised by flat

column tops and vertical sides as compared to previous Monte-Carlo simulations and

columnar growth experiments. The shadowed deposition favors the columnar growth

and the anisotropic diffusion smoothes the top of the column very efficiently and leads to

vertical sides. The competition between these two effects leads to a columnar regime as

expected. Moreover, most of the columns formed at the beginning of the simulation are

still present at the end. This is also the case for “Poisson/Wedding cakes” morphologies

for which initial columns always remains [20] and for step meander process [17].

For numerical simulation, equation (3) is integrated using the following explicit

scheme:

hn+1

i = hn
i + (Ωn

i )2 (4)
[

∆t R

√

1 +
(hn

i+1 − hn
i )2 + (hn

i+1 − hn
i )(hn

i − hn
i−1) + (hn

i − hn
i−1)

2

3 ∆x2
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+
ν ∆t

∆x2
(hn

i+1 − 2 hn
i + hn

i−1) +

√

2 D ∆t

∆x
ε

]

with the notation hn
i = h(i ∆x, n ∆t). ε is a random number picked with the uniform

distribution between [−1, 1[. To obtain a discrete form of the gradient term, we follow

the scheme proposed by Lim et al. although their study strictly applied for the KPZ

equation [19]. Ω(x, {h}) is evaluated following reference [6].

The time evolution of the roughness W of the interface is given figure 3. It

shows the existence of different regimes. The first one, for t < 1 is driven by the

fluctuations and W scales as t0.5. For the second one (1 < t < 100), diffusion induced a

relative reduction of the roughness which scales as t0.4. Then, because of the shadowing

instability described above, sharp canyons appear and the roughness quickly increases.

Finally, after t ∼ 1000, the columnar regime appears which leads to W (t) ∼ t as in

the discrete model [14]. Even if W (t) shows the same scaling as obtained in previous

studies on continuous columnar growth model [14, 15, 16], the column shapes are rather

different and are now in closer agreement with the MC models and more important with

the experiments [3, 4]. Indeed, experiments display relative constant column width,

while MC simulations lead to a column width which is increasing with time. In that

respect, our model (3) exhibits a better qualitative agreement with experiement than

MC simulations.
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Figure 2. Continuous model. Snapshots of the interface given by the non-linear

shadowing anisotropic diffusion model given by equation (3) at time t = 500, 1 000,

2 000 and 4 000. The numerical simulation was done with ∆t = 0.01, ∆x = 1 and the

total suze of the system is L = 1024.

We have presented the first continuous model, to our knowledge, that exhibits a

columnar growth without the coarsening dynamics of the structures, in good agreement

with experimental observations on sputtering deposition. For reproducing these wide

flat columns with sharp edges, we have introduced an increase of the relaxation and
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Figure 3. Continuous model. Roughness W (t) as a function of time.

of the flux on the top of the column compared to the grooves. By sake of simplicity,

we have considered a 1D surface and we have taken the same non local and nonlinear

multiplicative factor g(Ω(x, {h})) for all the terms of the dynamics. Further on, we have

considered a simple power law behaviour for this function g(Ω(x, {h})) = Ωn. We argue

that n > 1 is needed to enhance the shadowing effects on the protuberances. We have

tested numerically n = 2 and n = 3 with no loss of properties of the results. However,

a better choice of the shadowing function g should be obtained through further exper-

imental comparisons. Similarly, different shadowing functions should be considered in

the future for the diffusion term and the deposition term. Finally, this new continuous

model, with n = 2, considered as a minimal model, already correctly reproduces the

formation of flat wide columns, with sharp edges and thin separating grooves, as usually

encountered in sputtering deposition. Further works should perform such approaches to

two dimensional surfaces in particular.
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