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The general decomposition of the spectral correlation tensor Rijskd by Cambon et al. fJ. Fluid Mech.
202, 295 s1989d; 337, 303 s1997dg into directional and polarization components is applied to the
representation of Rijskd by spherically averaged quantities. The decomposition splits the deviatoric
part Hijskd of the spherical average of Rijskd into directional and polarization components Hij

sedskd
and Hij

szdskd. A self-consistent representation of the spectral tensor is constructed in terms of these
spherically averaged quantities. The directional and polarization components must be treated

independently: representation of the spectral tensor using the spherical average Hijskd alone proves
to be inconsistent with Navier-Stokes dynamics. In particular, a spectral tensor consistent with a

prescribed Reynolds stress is not unique. Since spherical averaging entails a loss of information, the

description of an anisotropic correlation tensor by spherical averages is limited to weak departures

from isotropy. The degree of anisotropy permitted is restricted by realizability requirements. More

general descriptions can be given using a higher-order expansion of the spectral tensor.

Directionality is described by a conventional expansion in spherical harmonics, but polarization

requires an expansion in special tensorial quantities generated by irreducible representations of the

rotation group SO3. These expansions are considered in more detail in the special case of axial

symmetry. © 2006 American Institute of Physics. fDOI: 10.1063/1.2265012g

I. INTRODUCTION

The most basic statistical property of the fluctuating ve-

locity field in a turbulent flow is its single-time two-point

correlation tensor

R̃ijsx,x8;td = kui8sx,tdu j8sx8,tdl . s1d

In homogeneous turbulence, a simpler description is possible

by the second-order spectral tensor Rijsk , td, which is a func-
tion of the wave-vector argument k.

1,2
The dependence of R

on the entire wave vector k and the consequent angle depen-

dence is involved in various important dynamical properties

such as redistribution of energy by the “rapid” pressure-

strain process.
3

Many simplified descriptions of the wave-vector depen-

dence of the correlation tensor R have been proposed.
4–7

They share the generic form

Rijsk,td = Usk,tdPijsk̂d + BUsk,tdHpqsk,tdk̂pk̂qPijsk̂d

+ CUsk,tdPinsk̂dP jmsk̂dHnmsk,td . s2d

Complete explanation of the notation will be given later; for

now, we stress the essential point that the anisotropic prop-

erties of the correlation are described by a single tensor func-

tion Hsk , td that depends only on the wave number k= uku.
These models are revisited here by comparison with an

exact decomposition of the spectral tensor
8–10

into terms that

represent distinct properties: directional and polarization an-
isotropy. This decomposition has both a physical and a geo-

metrical basis, which we review. Equation s2d proves to con-

strain directional and polarization anisotropy in ways that

may be inconsistent with Navier-Stokes dynamics. Examples

are given of anisotropic flows that cannot be described by a

model of this form. Instead, we propose a new model in

which directionality and polarization are unconstrained. The

consequent description of anisotropy by two tensor functions
of wave number k is shown to be consistent with the

dynamics.

Since spherical averaging must suppress some of the k

dependence of the correlation tensor, it is anticipated that

only relatively weak anisotropy is well characterized by

spherical averages, and in fact, realizability conditions prove

to constrain the degree of anisotropy that can be so charac-

terized. These limitations can be overcome in principle by

more complex expansions. These expansions are considered

from the viewpoint of the representation theory of the rota-

tion group SO3, which has become prominent in many recent

investigations.
11,12

Directional anisotropy is described by an

expansion in conventional spherical harmonics, however po-

larization anisotropy proves to require a more complex ten-

sorial generalization. The lowest-order correction to the de-

scription by spherical averages is considered in some detail

in the special case of axisymmetric kinematics.

These results on the description of anisotropy can be

applied in several different ways. First, they have applica-

tions in turbulence modeling where special expressions for

the spectral tensor have long been used to evaluate pressure-

strain correlations in second moment closures
4,5
using ex-

pressions such as Eq. s2d. They can also be useful in analyz-
ing data taken in anisotropic flows, where the full
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information available from direct numerical simulations or

experimental measurements is only poorly characterized by

simple single-point statistics such as the Reynolds

stresses.
13,14

In another direction, we can use the refined de-

scription to improve data synthesis, as in methods such as
kinematic simulation,

15
in which turbulent fluctuations are

replaced by synthesized fields with given statistics. Applying

refined anisotropy descriptions should improve the predic-

tions when such methods are applied to anisotropic flows.
16

The paper is organized as follows. General anisotropic

correlation functions are discussed in Sec. II without ap-

proximations. The fundamental ideas of directional and po-

larization anisotropy are introduced. The description of an-

isotropy by spherically averaged tensors is introduced in Sec.

III. The undesirable effects of not distinguishing directional-

ity and polarization are described. Two examples of weak

shear effects—sheared isotropic turbulence at short times

and the small scales in sheared turbulence at arbitrary

times—are analyzed in Sec. IV, and shown to require a de-

scription in terms of directional and polarization anisotropy.

Section V discusses the parametrization of spectral aniso-

tropy by single-point moments. Realizability constraints on

anisotropic models are discussed in Sec. VI. They make pre-

cise the limitation of these models to weak anisotropy. Sec-

tion VII considers how the restriction to weak anisotropy can

be mitigated by more accurate, higher-order expansions

based on representation theory of the rotation group SO3.

Explicit formulas are given in the special case of axial sym-

metry. Section VIII summarizes the main results. An appen-

dix presents some basic results on anisotropic turbulence

with helicity.

II. EXACT RELATIONSHIP FOR ARBITRARY
ANISOTROPIC SECOND-ORDER STATISTICS

The decomposition of a second-rank tensor into an iso-

tropic trace component and a deviator will be generalized to

the correlation tensor, taking into account two special fea-

tures: the solenoidal property

kiRijsk,td = Rijsk,tdk j = 0 s3d

that follows from the incompressibility of the velocity field,

and the dependence on the vector argument k. In what fol-

lows, the helicity of the velocity field will be assumed to

vanish; accordingly, the correlation tensor has the symme-

tries Rijsk , td=R jisk , td=Rijs−k , td. The extension of the kine-
matics to helical turbulence is considered in the Appendix.

We recall that if the snonhelicald correlation tensor is isotro-
pic, then elementary arguments

1
show that it is proportional

to the special tensor

Pijsk̂d = dij − k̂ik̂ j , s4d

where k= uku and k̂i=ki /k is the unit vector along k. We also

recall the elementary property

Pijskdki = Pijskdk j = 0, s5d

which states that P is solenoidal, and

PimskdPmjskd = Pijskd , s6d

which states that P is a projection. The geometric meaning of

Eqs. s5d and s6d is that at any vector k, Pskd is the projection
onto the plane perpendicular to k. We will also use the ob-

vious results

Pmmskd = PmnskdPmnskd = 2. s7d

To begin, note from Eq. s3d that 0 is always an eigen-

value of Rsk , td, and that k itself is the corresponding eigen-

vector. It follows that in any frame centered at k in which k̂

is one of the basis vectors, Rsk , td can be represented as the
matrix

R = 3
a b 0

b c 0

0 0 0
4 s8d

characterized by exactly three real scalars, where again we

remark that the absence of helicity implies that R is symmet-

ric in any basis. A trace-deviator decomposition in the plane

normal to k yields

R = 3
e 0 0

0 e 0

0 0 0
4 + 3

d b 0

b − d 0

0 0 0
4 , s9d

where

e = 1

2 sa + cd , d = 1

2 sa − cd . s10d

In this frame, P, as the projection onto the plane perpendicu-

lar to k̂, is represented by the matrix

P = 3
1 0 0

0 1 0

0 0 0
4 . s11d

Introducing the two independent symmetric matrices

M1 = 3
1 0 0

0 − 1 0

0 0 0
4 , M2 = 3

0 1 0

1 0 0

0 0 0
4 , s12d

we therefore have

R = eP + dM1 + bM2. s13d

In terms of the complex quantities,

Z = d + ib, M =M1 − iM2, s14d

Eq. s13d can be written alternatively as

R = eP +RsZMd . s15d

An obvious coordinate system in which k̂ is a basis vec-

tor at every k is the spherical coordinate system in k space,

in this context called the Craya-Herring frame.
2
For the ap-

plication of this coordinate system to explicit expressions for

M1 and M2 in terms of the helical mode decomposition using

the scomplexd eigenvectors of rotations about k̂, see Cambon

and Jacquin
8
and Waleffe.

17
Equations s13d and s15d express
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R in terms of the minimal number of scalars: the three real

quantities bsk , td , dsk , td ,esk , td or equivalently, esk , td and
the complex scalar Zsk , td.

Defining

Rpol = dM1 + bM2 = 3
d b 0

b − d 0

0 0 0
4 , s16d

the decomposition in Eq. s13d,

R = eP + Rpol s17d

is characterized by the properties

e = 1

2R:P =
1

2 tr R, Rpol:P = 0. s18d

Because these properties are independent of the coordinate

system, we can also arrive at Eq. s17d by coordinate-free

arguments. Thus, define the projection of R along P by

RP =
1

2 sR:PdP , s19d

where the factor of 1 /2 is due to Eq. s7d. The operation so

defined is a projection because fRPgP=RP. Accordingly, the
decomposition

R =
1

2 sR:PdP + fR −
1

2 sR:PdPg s20d

coincides with Eq. s17d after introducing the definition equa-
tion s18d of e and replacing Eq. s16d by the coordinate-free

definition

Rpol = R −
1

2 sR:PdP . s21d

The polarization tensor is geometrically very simple:

Rpol has one zero eigenvalue because it is solenoidal, and

since R and Rpol are both solenoidal,

tr Rpol = Rpol:P = 0. s22d

Accordingly, its characteristic polynomial is simply

psld = l3 − s 12Rpol:Rpoldl s23d

which also follows directly from the explicit expression Eq.

s16d. It follows that the eigenvalues of Rpol are

0 , ±Î1

2
Rpol :Rpol. Since the eigenvalues of eP are obviously

just e ,e ,0, the eigenvalues of R are e±Î1

2
Rpol :Rpol ,0. The

realizability of R is therefore simply the condition

e $ Î1

2R
pol:Rpol. s24d

Note from Eqs. s14d and s16d that

ZZ* =
1

2R
pol:Rpol, s25d

where the “star” denotes complex conjugation. Thus, al-

though the scalars d=RZ and b=IZ are coordinate-

dependent, the magnitude uZu is a geometric invariant.
Equation s20d is a straightforward generalization of the

trace-deviator decomposition in which the trace, the projec-

tion along dij, is replaced by the operation of projection

along P.
The general decomposition equation s17d can be rewrit-

ten in a form that isolates the purely isotropic part by pro-

jecting esk , td onto its spherical average,

Usk,td =
1

4pk2
R

Sk

esk,tdd2k , s26d

where rSk
s· · · dd2k denotes integration over a spherical shell

of radius k. Note that since trivially Usk , td
= s1/4pk2drSk

Usk , tdd2k, Eq. s26d does define a projection.

Defining

Esk,td = esk,td − Usk,td s27d

and

Rdirsk,td = Esk,tdPsk̂d s28d

we have

s29d

The decomposition of the correlation tensor in Eq. s29d
has a simple but important geometrical significance: recall

that the decomposition of a symmetric second rank tensor

into its trace and deviator is invariant under rotation of the

coordinate axes, which transforms the isotropic trace term

into itself and the deviator into another deviator. The decom-

position in Eq. s29d has a similar property with respect to

simultaneous transformation by rotation of the tensor com-

ponents and the wave vector k: because the components in

the decomposition have intrinsic characterizations in terms

of their eigenvalues, such transformations map a polarization

tensor into another polarization tensor, a directionality tensor

into another directionality tensor, and the isotropic part into

itself. These properties provide an elementary example of the

SO3 decomposition that will be considered in detail later.

III. DESCRIPTION BY SPHERICAL AVERAGES

The most apparent practical difficulty in formulating a

complete description of spectral anisotropy lies in the k de-

pendence of the correlation tensor. Consequently, the search

for simpler descriptions generally begins by considering

spherically averaged quantities.
18–20

Whereas spherical inte-

gration of a scalar quantity would remove all information

about anisotropy, the weighting by tensors like P in fact

permits retention of some nontrivial anisotropic properties on

spherical averaging of R. Nevertheless, such a description of
spectral anisotropy is limited to relatively weak anisotropy,

since spherical averages can give only partial information

about k dependence. This section presents a complete analy-

sis of anisotropy at the level of spherical averages; even this

partial description proves to be nontrivial.

The essential idea is to treat directionality and polariza-

tion anisotropy separately. Given any correlation tensor

Rsk , td, we can construct two natural tensor measures of an-
isotropy that depend only on k: they are defined by

2Esk,tdHsedsk,td = R
Sk

Rdirsk,tdd2k , s30d
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2Esk,tdHszdsk,td = R
Sk

Rpolsk,tdd2k , s31d

where

Esk,td = R
Sk

esk,tdd2k = 4pk2Uskd s32d

is the energy spectrum.
21
The notation Hse,zd follows Cambon

and Jacquin,
8
and is motivated by the characterization in Sec.

II of directional anisotropy by the scalar esk , td and of polar-
ization anisotropy by the complex scalar Zsk , td. It is also
convenient to introduce H=Hsed+Hszd noting that

2Esk,tdHsk,td = R
Sk

fRdirsk,td + Rpolsk,tdgd2k

= R
Sk

fRsk,td − Usk,tdPskdgd2k s33d

so that H represents the complete anisotropic part of the

correlation. Obviously,

2Esk,tdtr Hsedsk,td = R
Sk

tr Rdirsk,tdd2k

= R
Sk

se − Udtr Pskdd2k = 0 s34d

and, in view of Eq. s22d,

2Esk,tdtr Hszdsk,td = R
Sk

tr Rpolsk,tdd2k = 0 s35d

so that both of Hse,zd are trace-free.

We wish to construct a modeled correlation tensor that

depends only on the spherical averages Hse,zd. The discussion

in Sec. II motivates constructing Rdir and Rpol separately. To

begin, note that Rdir depends linearly on Hsed and is propor-

tional to P. The simplest assumption consistent with these

properties is

Rdirsk,td = AUsk,tdfHsedsk,td:Psk̂dgPsk̂d s36d

with an undetermined constant A. Equivalently, in terms of

the solenoidal tensor PHsedP, Eq. s36d sets Rdir

=AfPHsedPgdir. The constant A should be chosen to be con-

sistent with the definition equation s30d; the spherical aver-
age of each side of Eq. s36d gives

2Esk,tdHsedsk,td = − 2

15AEsk,tdHsedsk,td s37d

so that A=−15.
The treatment of the polarization tensor is somewhat less

straightforward. Rpol must be solenoidal and linear in Hszd.

These requirements suggest the form Rpol=PHszdP. But in
addition, we must take into account that Rpol :P=0. A gen-

eral form consistent with all constraints is therefore

Rij
polsk,td = BUsk,tdfPimsk̂dHmn

szd sk,tdPnjsk̂d

−
1

2Hpq
szdsk,tdPpqskdPijskdg s38d

with an undetermined constant B. Again, in terms of the

solenoidal tensor PHszdP, Eq. s38d sets Rpol=BfPHszdPgpol.
Spherical averaging as in Eq. s37d gives

2Esk,tdHszdsk,td = 1

5BEsk,tdHszdsk,td s39d

so that B=5.
Combining the results of Eqs. s36d and s38d, we obtain

the required representation

Rijsk,td = Usk,tdPijsk̂d + 15Usk,tdPijsk̂dHpq
sedsk,tdPpqsk̂d

+ 5Usk,tdfPinsk̂dP jmsk̂dHnm
szd sk,td

−
1

2Pmnsk̂dHnm
szd sk,tdPijsk̂dg s40d

or equivalently,

Rijsk,td = Usk,tdPijsk̂d − 15Usk,tdPijsk̂dHpq
sedsk,tdk̂pk̂q

+ 5Usk,tdfPinsk̂dP jmsk̂dHnm
szd sk,td

+
1

2Pijsk̂dHpq
szdsk,tdk̂pk̂qg . s41d

This equation is the main result of this paper. It shows

that a self-consistent description of weak anisotropy without

arbitrary constants is possible using independent descriptors

of directionality and polarization by tensor functions of the

wave number k alone. The restriction to weak anisotropy is

due to the description by spherical averages alone, as noted

at the beginning of this section. The “self-consistency” of the

result is understood in two ways: first, that the spherical av-

erages of both sides of Eq. s41d are equal; and second, that if

Rijsk,td = Usk,tdPijsk̂d − 15Usk,tdPijsk̂dApqsk,tdk̂pk̂q

+ 5Usk,tdfPinsk̂dP jmsk̂dBnmsk,td

+
1

2Pijsk̂dBpqsk,tdk̂pk̂qg s42d

with arbitrary trace-free A and B, then this construction will
lead to Eq. s41d with Hsed=A and Hszd=B.

Note that since tr Hsed=0, the quantity Hpq
sedsk , tdk̂pk̂q that

appears in Eq. s41d is a second-order spherical harmonic:

after choosing a polar axis and introducing spherical coordi-

nates, it would be expressed in terms of Legendre functions

in the standard way. The term in brackets containing Hszd is a

tensor analog of a spherical harmonic; we will refer to scalar
spherical harmonics sSSHd and tensor spherical harmonics
sTSHd henceforth. From this viewpoint, Eq. s41d states the
lowest-order terms in expansions of Rdir and Rpol, respec-

tively, in scalar and tensor harmonics, or in irreducible rep-

resentations of the rotation group SO3. This connection will

be developed further in Sec. VII.

We next ask whether a solenoidal correlation function

can be constructed consistent with H alone. Proceeding as

before, we set

Rdir = AUsk,tdsH:PdP ,
s43d

Rpol = BUsk,tdfPHP − 1

2 sH:PdPg .
We already note that these equations implicitly impose some

relation between Rdir and Rpol and therefore cannot be en-

tirely satisfactory. On spherical averaging, we find
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H = s 1

15A +
1

5BdH . s44d

The solution is not unique: it is

A = 15 + 3a, B = − a , s45d

where a can be a function a=ask , td. Thus, the spectral tensor
is

Rijsk,td = Usk,tdPijsk̂d + s1 + 1

5ad
3Usk,tdHpqsk,tdPpqsk̂dPijsk̂d − 1

5aUsk,td

3fPimsk̂dP jnskdRmnsk̂,td

−
1

2Hpqsk,tdPpqsk̂dPijsk̂dg s46d

and

Hsed = s1 + 2

5adH, Hszd = −
2

5aH , s47d

which implies the proportionality

2

5aHsed = − s1 + 2

5adHszd. s48d

Equation s46d coincides with the proposal of Cambon et al.4

to connect the spectral tensor to its spherical average. Other

more empirical models in which anisotropy is parametrized

by a tensor function of wave number k have been proposed.5

It will be shown in the next section that no single choice of

the quantity a can be adequate in all cases.

IV. APPLICATION: SHORT- AND LONG-TIME
BEHAVIOR OF WEAKLY SHEARED TURBULENCE

This section will give examples of anisotropic flows that

are known to depart only weakly from isotropy, and will

verify that the correlation tensor is indeed described by Eq.

s41d.
The first example is homogeneous shear flow with iso-

tropic initial conditions treated by rapid distortion theory

sRDTd in the short-time limit. Using the notation of Cambon
and Scott,

19
we begin with the general RDT equation,

]Rij

]t
sk,td = −

dkn

dt

]

]kn
Rijsk,td − MinskdRnjsk,td

− M jnskdRinsk,td , s49d

where Mij= sdim−2k̂ik̂mdAmj, Aim=]Ūi /]xm is the mean ve-

locity gradient, and the wave vector kn satisfies dki /dt
=−A jik j. We will consider evolution away from an isotropic

initial condition Rsk ,0d=UskdPsk̂d at very short times, when
the effects of the mean shear remain weak.

Consider the first-order Taylor series expansion Rsk , td
=UskdP+ tṘsk ,0d. Evaluating Eq. s49d at t=0 using the iso-
tropic initial condition leads easily to

]Rij

]t
sk,0d = Apnk̂pk̂nkU8skdPijsk̂d + Uskdk̂ik̂pApnPnjsk̂d

+ Uskdk̂ jk̂pApnPnisk̂d − UskdAinPnjsk̂d

− UskdA jnPnisk̂d

= Spnk̂pk̂nkU8skdPijsk̂d − UskdPipskdPnjskdSpn,

s50d

where Sij=
1

2
sAij+A jid is the strain rate. It follows that

Rij
dirsk,td = 1

2 tSpqk̂pk̂qfkU8skd + UskdgPijskd , s51d

Rij
polsk,td = − tUskdfPimskdP jnskdSmn +

1

2Spqk̂pk̂qPijskdg .
s52d

We remark that the U8 term comes from the dki /dt effect in
the RDT equations: it is a conservative linear energy transfer

mechanism in k space, which therefore appears as a direc-

tionality effect; polarization effects instead arise when en-

ergy is transferred between different tensor components of

the correlation. We see from Eqs. s51d and s52d that both

effects are relevant. Spherical integration gives

Hsedsk,td = −
1

15
S− 1 + k

E

dE

dk
DSt and Hszdsk,td = −

2

5
St .

s53d

This leads to askd=15/ f5+ sk /EddE /dkg in Eq. s47d.
It is useful to supplement this short-time analysis by

long-time nonlinear analysis.
22–24

These computations begin

with a closure model for shear turbulence,

]Rij

]t
sk,td = −

dkn

dt

]

]kn
Rijsk,td − MinskdRnjsk,td

− M jnskdRinsk,td + Tijsk,td , s54d

where T is a theory-dependent closure for the nonlinear en-

ergy transfer.
6,7,22–24

Whereas Eq. s49d considers a limit in

which nonlinearity can be neglected in comparison to the

linear shear mechanisms, in these calculations the opposite

assumption is made, namely that in some range of small

scales, the mean shear may be treated as a weak perturbation

of isotropic turbulence: the calculation itself will identify an

appropriate small parameter. The most recent such analysis
6,7

overcomes some limitations of previous work, and intro-

duces a Lagrangian viewpoint, with important analytical and

conceptual advantages. Yoshida et al.7 refer to this calcula-

tion as “linear response theory” for turbulence, since it is

accomplished by linearizing about an isotropic nonlinear

state. As in the RDT problem above, anisotropy is therefore

weak, although for an entirely different reason, and we can

again expect Eq. s41d to describe the spectral tensor.
General kinematic considerations

4,5
lead, in the notation

of Ishihara et al.,6 to
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Rijsk̂d = UskdPijskd + bskdPijsk̂dSpqk̂pk̂q

+ 2a8skdPinsk̂dP jmsk̂dSnm s55d

from which we immediately deduce

Rij
dir = sb − a8dsSpqk̂pk̂qdPijsk̂d ,

s56d
Rij
pol = 2a8fPimsk̂dP jnsk̂dSmn +

1

2Spqk̂pk̂qPijsk̂dg ,
which has exactly the same structure as Eqs. s51d and s52d
except for the scalar functions of k; consequently,

Hsed = −
1

15usedS, Hszd = −
2

5uszdS , s57d

where usedskd= fbskd−a8skdg /Uskd and uszdskd=2a8skd /Uskd
are time scales. In a Kolmogorov inertial range, we will have

sagain using the notation of Ishihara et al.6d

used = sA − Bde−1/3k−2/3, uszd = Ae−1/3k−2/3, s58d

where A and B are universal constants. In this case,

2

5AHsed =
1

15sB − AdHszd s59d

and the anisotropic part of the spectrum satisfies

EHsed , EHszd , k−7/3, s60d

the scaling suggested by dimensional analysis.
25

Equations s53d, s57d, and s58d reveal important qualita-
tive differences between these two calculations. In RDT, Eq.

s53d implies that anisotropy is significant at all scales of

motion, whereas in the nonlinear calculation, Eqs. s57d and
s58d show that the descriptors of anisotropy Hse,zd both ap-

proach zero in the limit k→` of small scales of motion. The

present analysis has treated these regimes independently: an

interesting problem is to understand how these two regimes

coexist and merge in homogeneous shear flow.

Yoshida et al.7 find theoretical values from spectral clo-

sure theory A<−0.16 and B<−0.40. Experimental and DNS

measurements give values closer to A<−0.12 and

B<−0.009. It is found that making realistic corrections to

the theoretical values to account for the finite inertial range

in the measurements results in much closer agreement. How-

ever, for our purposes, the actual values are not so crucial;

the important observation is that a weakly anisotropic spec-

tral model based on a single tensor H imposes some fixed

proportionality Hsed=lHszd as shown by Eq. s48d; such mod-
els cannot be consistent with both the short- and the long-

time results equations s53d and s59d. On the other hand, the
model equation s41d can be consistent with both limits. Note
also that since neither A nor A−B is approximately zero,

neither directional nor polarization anisotropy can be ne-

glected in this problem.

In the case of purely rotational strains, where A is anti-

symmetric and hence the strain S vanishes, the first-order

contribution to the correlation tensor computed in Eqs. s53d
and s56d vanishes because the antisymmetric tensor A cannot

contribute to the symmetric correlation tensor. Nevertheless,

rotating turbulence provides another example of how direc-

tionality and polarization must be separated in general. The

inviscid RDT equation
8
for this problem implies

Rdirsk,td = Rdirsk,0d, Rpolsk,td = exps4 ı Vk̂3tdR
polsk,0d ,

s61d

which yields

Hesk,td = Hsedsk,0d, Hszdsk,td → 0. s62d

We see then that the kinematics of turbulence under rapid

rotation is dominated by directional anisotropy alone.

Spherically averaged polarization can be neglected even in

the presence of nonlinearity, but directional anisotropy can

be created by nonlinearity, even if it is initially zero.
8,10,13

V. PARAMETRIZATION BY SINGLE-POINT
MOMENTS

Turbulence statistics are very unlikely to require

description by functions Hij
se,zdskd that are entirely distinct for

different indices si , jd; instead, it is expected that they might
be linked by scaling relations of the form Hij

se,zdslkd
,laHij

se,zdskd for a single scaling exponent a. A more general

form of this idea is the heuristic principle, namely that quan-

tities that transform among themselves under rotations can

exhibit characteristic scaling properties.
11,12

These considerations motivate seeking a parametric de-

scription of the form

Hse,zdsk,td ~ cse,zdsk,tdbse,zdstd s63d

in terms of the two single-point moments bse,zdstd defined by

bsedstd =

E
0

`

Esk,tdHsedsk,tddk

E
0

`

Esk,tddk

,

s64d

bszdstd =

E
0

`

Esk,tdHszdsk,tddk

E
0

`

Esk,tddk

and the scalar functions cse,zdsk , td; it might even be reason-
able to assume that these functions are independent of time,

but this issue will not be considered here.

It is evident from Eqs. s64d and s33d that

b = bsed + bszd s65d

is the anisotropy tensor defined by

bij =
kui8u j8l

kup8up8l
−
1

3
dij s66d

as the deviatoric part of the dimensionless Reynolds stress.

Note that the e and z contributions to Eq. s63d cannot be

added unless csed=cszd; thus, H depends on bsed and bszd sepa-

rately, not on b. Thus, we have
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Hsk,td =

E
0

`

dkEsk,td

E
0

`

dkcsk,tdEsk,td

csk,tdbstd if csed = cszd = c .

s67d

For example, consider the short-time RDT results of the

previous section. Multiplying each result in Eq. s53d by 2E
and integrating over k gives

bsed =
2

15St, bszd = −
2

5St, b = −
4

15St , s68d

thus

Hsed =
15

2
S− 1 + k

E

dE

dk
Dbsed, Hszd = bszd. s69d

Note, in connection with Eq. s67d, that a direct connection
between H and b cannot be established, because Eq. s69d
implies that csedÞcszd. Equation s68d implies that

bsed = − s1/3dbszd, s70d

or equivalently,

− 2bsed = b . s71d

The persistence of the short-time relation equation s71d at

long times for irrotational mean flows has been discussed by

Kassinos et al.26 However, Eq. s69d shows directly that this

rather exceptional condition does not apply to the spectral

quantities Hse,zd.

We can also compute bse,zd for the results of Yoshida

et al.7 To obtain a definite result, we will follow previous

calculations of this type
22–24

and integrate the inertial range

spectrum Eskd=Cke
2/3k−5/3 over a range of scales k$k0,

where k0 is identified with the scale at which the inertial

range can be considered to begin, although this integration

may include scales for which the hypotheses of the perturba-

tion theory are not valid. The result is

bsed =
1

30Ck
−1sB − Ade−1/3k0

−2/3S ,

s72d
bszd =

1

10Ck
−1Ae−1/3k0

−2/3S ,

so that

Hsed = 2CKS k0
k
D2/3bsed, Hszd = 4CKS k0

k
D2/3bszd. s73d

In comparing the results equations s68d and s72d, we see that
the time scale in short-time RDT is simply elapsed time t,
whereas it is a turbulent time scale ~e−1/3k0

−2/3 in the linear

response theory. We can also note the remarkable change in

the relation between Hse,zd and bse,zd between Eqs. s69d and
s73d: in RDT, Hsed is related to bsed through a term containing

dE /dk but Hszd and bszd are simply equal; in the linear re-

sponse theory, explicit dependence on dE /dk has disap-

peared, and cse,zdskd both decay as k−2/3.
The introduction of bse,zd is a way to describe anisotropy

in terms of single-point moments. An equivalent approach is

the structure tensor formalism proposed by Kassinos et al.26

The connections between these approaches are discussed in

detail by Salhi and Cambon.
27

The result of Eq. s63d can be substituted in Eq. s41d to
give a general anisotropic representation in terms of single-

point quantities and two scalar functions cse,zdskd,

Rijsk,td = Usk,tdPijsk̂d − 15Usk,tdPijsk̂dbpq
sedstd

3csedsk,tdk̂pk̂q + 5Usk,tdfPinsk̂dP jmsk̂dbnm
szd std

3cszdsk,td + 1

2Pijsk̂dbpq
szdstdcszdsk,tdk̂pk̂qg . s74d

Just like the attempt to characterize anisotropy in terms of H
alone, an attempt to replace Eq. s74d by an expression in b
alone will encounter difficulties. An example of such a pa-

rametrization of the correlation tensor is the proposal of Shih

et al.5 Written in terms of directional and polarization aniso-

tropy components, it is

Rijskd = Usk,tdPijskd + c3sk,tdPijsk̂dsg −
1

2dbpqk̂pk̂q

+ c3sk,tdPinsk̂dP jmsk̂dsbnm +
1

2dnmbpqk̂pk̂qd . s75d

Thus,

Hsed = sg −
1

2d15
c3sk,td
Esk,td

b, Hszd = 5
c3sk,td
Esk,td

b s76d

so that

5Hsed = 3sg −
1

2dHszd. s77d

Since this result fixes a definite proportionality between Hsed

and Hszd, it is a special case of Eq. s46d in which the constant
g could be related to the parameter a. It is not necessary to
give the explicit relation; the important fact is such models

cannot be consistent with the equations of motion or the

general kinematics. Considerations of realizability, which

will be discussed later, led to the choice g=
1

2
, which re-

moves directional anisotropy entirely, and is therefore incon-

sistent with the problems of shear and rotating turbulence

just analyzed. The important conclusion is that since the gen-

eral model for R in terms of the stress anisotropy b in Eq.

s75d must contain an arbitrary constant, the spectral tensor
cannot be uniquely reconstructed from the stress anisotropy
alone.

VI. REALIZABILITY

We have seen that if any arbitrary correlation tensor is

given, Eq. s41d provides a simplified approximation with the
property that its spherical averages agree with those of the

original tensor. However, we did not demonstrate that Eq.

s41d in fact describes a possible correlation tensor. This issue
raises the question of realizability: is the positivity condition

Rijnin j $0 satisfied for arbitrary ni? Obviously, if the original

correlation tensor is only weakly anisotropic, then its aniso-

tropic part is a small perturbation of the isotropic part

Usk , tdPsk̂d, and as this part is strictly positive sRijnin j .0d,
the realizability inequality is satisfied for sufficiently small

perturbations. On the other hand, there is no guarantee that if

the original correlation is strongly anisotropic, the approxi-

mation in Eq. s41d represents a possible correlation.
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In view of Eqs. s24d and s25d, the realizability condition
formulated in Sec. II can be expressed as e$ uZu. For sim-
plicity, let us consider the weaker condition e$0. In the

decomposition of Eq. s41d, e=Us1−15Hpq
sedk̂pk̂qd. Thus the

simple necessary realizability condition e.0 is violated if

the largest positive eigenvalue of Hij
sed

is larger than 1/15:

this tensor being trace-free, at least one positive eigenvalue

must exist. In fact, from rsk
esk , tdPijsk̂dd2k=2Eskdss1/3ddij

+Hij
sedd, these eigenvalues are bounded by ±1/3, as they are

for any deviatoric tensor derived from a definite-positive ma-

trix. This realizability constraint quantifies precisely how

“small” the anisotropy must be to admit description by

Eq. s41d.
Although it is weaker than the exact condition e$ uZu,

the condition e$0 already proves to be very restrictive.

Even if Hsed is never zero in “true” anisotropic homogeneous

flows, it is safer to suppress its contribution entirely than to

risk problems of nonrealizability, as in the ad hoc models
5,7

discussed in the previous section. Even the value of the con-

stant in the quasi-isotropic model of Launder et al.28 may
reflect this condition.

4,5

VII. SO3 DECOMPOSITION

The realizability constraint e$ uZu restricts the applica-

tion of a theory based on spherical averages alone; since

simply ignoring directional anisotropy is unsatisfactory in

general, we will discuss the construction of more accurate

anisotropic approximations to the correlation tensor using

higher-order expansions based on irreducible representations

of the rotation group SO3. This theory has recently been

found very useful in clarifying the scaling properties of gen-

eral correlation functions in turbulent flows.
11,12

A. Directional anisotropy

The spectrum models that have been considered so far

suggest how the anisotropic part of the correlation can be

expanded in powers of k̂. For example, we can continue the

development of the first term on the right side of Eq. s41d
beyond the second order by writing

Esk,td = Umn
2 sk,tdk̂mk̂n + Umnrs

4 sk,tdk̂mk̂nk̂rk̂s + ¯ , s78d

where U2=−15Hsed. The expansion is restricted to polynomi-

als of even order because of the parity property Rijs−k̂d
=Rijsk̂d.

Although the notation suggests that Eq. s78d proceeds in
powers of k̂i, it does not do so without some restrictions on

the coefficients. For example, if Umnrs
4 =dmnArs, then

Umnrs
4 kmknkrks=k2Arskrks; but this term could be included in

the U2 term. Without presenting any details, suffice it to say

that if all such redundancies are eliminated, then U4 will

belong to a nine-dimensional representation of SO3 on ho-

mogeneous quartic polynomials satisfying ¹2Uijmn
4 kik jkmkn

=0. This is discussed in detail in standard references.
29

Equivalently, after choosing a polar axis n, the expansion

could be described in terms of Legendre functions as a

spherical harmonics decomposition following Cambon and

Teissèdre,
30

s79d

where u=arcossn · k̂d is the polar angle and w is the azimuthal

angle in a system of polar-spherical coordinates with axis n,

and P2n
m are the associated Legendre polynomials of degree

2n and order m.

B. Polarization tensor

The analogous higher-order expansion of the second

term on the right side of Eq. s41d is

Rij
polsk,td = 1

2 fPimsk̂dP jnsk̂d + Pinsk̂dP jmsk̂d

− Pijsk̂dPmnsk̂dg

3 hTmn
0 sk,td + Tmnrs

2 sk,tdk̂rk̂s + ¯ j , s80d

where T0=5Hszd.

The structure of the higher-order terms in the expansion

of polarization is not as simple as the higher-order terms in

the expansion of directional anisotropy, and the steps that

make Eq. s80d an orthogonal expansion in irreducible repre-

sentations are less obvious and standard than the steps lead-

ing from Eq. s78d to Eq. s79d. Although T0~Hszd is simply a

constant trace-free second-rank tensor, T2 consists of matri-

ces with quadratic polynomial entries; their decomposition

into irreducible representations or tensor spherical harmon-
ics can be summarized as follows scompare also Arad et al.11

and Kurien and Sreenivasan
12

for more general tensor quan-

titiesd: beginning with the construction of invariant tensors of

differential operators, their action on homogeneous polyno-

mials belonging to a representation on scalar functions gen-

erated the appropriate representations on tensors. In the case

just mentioned, we find that T2 belongs to a 25-dimensional

representation that is decomposed into irreducible represen-

tations of dimensions 1, 3, 5, 7, and 9. The representation of

dimension 1 cannot contribute to polarization, and the repre-

sentation of dimension 3 does not survive solenoidal projec-

tion. The remaining representations of dimensions 5, 7, and 9

define solenoidal TSH. In the interest of concreteness, we list

the TSH that correspond to the irreducible representation of

dimension 5. To compute it, we use the infinitesimal

generators
29

of SO3:

Lx = ky ] /]kz − kz ] /]ky ,

Ly = kz ] /]kx − kx ] /]kz, s81d

Lz = kx ] /]ky − ky ] /]kx.

Let P2
I denote any five harmonic quadratics, for example,

hkx
2−ky

2 ,ky
2−kz

2 ,kxky ,kykz ,kzkxj. The representation of dimen-

sion 5 is defined by
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Nij
I = sLiL j + L jLi −

1

3LpLpdijdP2
I , I = 1, . . . ,5. s82d

Examples are the matrix so generated from kx
2−ky

2,

3
2skx

2 − kz
2d 2kxky 3kxkz

2kxky 2skz
2 − ky

2d − 3kykz

3kxkz − 3kykz 2sky
2 − kx

2d
4 s83d

and two others obtained by simultaneous cyclic permutations

of x ,y ,z and of tensor indices snote that the three tensors so
generated add up to zerod, and the matrix generated from

kxky,

3
2kxky kx

2 + ky
2 − 2kz

2 3kykz

kx
2 + ky

2 − 2kz
2 2kxky 3kxkz

3kykz 3kxkz − 4kxky
4 s84d

and two others obtained by the same cyclic permutations.

This analysis shows that it is only a coincidence that at

the lowest order of anisotropy, directionality and polarization

are both described by a constant trace-free second-rank ten-

sor. At even the next order, the descriptions are quite differ-

ent: as noted above, directionality is described by a homoge-

neous fourth-degree polynomial, but polarization is

described by three distinct types of second-rank tensors with

quadratic polynomial entries.

We believe that these expansions in scalar and tensor

spherical harmonics, which clearly have very different math-

ematical origins, again underscore the difficulties of con-

founding directional and polarization anisotropy.

C. Axisymmetric turbulence

The problems raised by extending the description from

weak anisotropy to arbitrary anisotropy can be better under-

stood in the comparatively simple case of axial symmetry.

Let the unit vector n be the axis of symmetry. In this case,

any trace-free tensor function of k alone obtained by spheri-

cal averaging, or any single-point moment obtained by

integration over all Fourier modes, can be expressed as

Hij=
1

2
Hns3nin j−dijd in terms of the single axial component

Hn=Hijnin j. As for the k-dependent spectra, a polar-spherical

system of coordinates can be introduced, so that Eq. s79d
reduces to

Esk,td = o
n=1

N0

e2nsk,tdP2n
0 scos ud s85d

in which only terms with m=0 appear. In addition, the po-

larization anisotropy also can be expanded as

Zsk,td = sin2 uo
n=0

N1

znsk,tdPn
0scos ud s86d

in which the complex-valued Z is defined as in Cambon and

Jacquin,
8
using the symmetry axis n to define the helical

modes. In Eq. s86d, zn is real for even n and purely imaginary

for odd n due to the Hermitian symmetry property Zs−kd
=Z*skd. If axial symmetry is understood to include invari-

ance under reflections through planes containing the polar

vector n, then Z is real, and only terms of even order appear

in the expansion of Z. Restricting to even orders with N1

=2N0, Eqs. s85d and s86d can be recovered from Sreenivasan

and Narasimha
31
and from Cambon and Teissèdre.

30

Note that the factor sin2 u is essential in the expansion of
Z in Eq. s86d because polarization anisotropy must vanish
when the wave vector is parallel to the axial vector n: refer-

ence to Eq. s16d shows that Rpol can only be axisymmetric if
b=d=0. The expansion of Z in Eq. s86d, therefore, is some-
what special. Assuming

2
a general spherical harmonics

expansion for Z is not consistent with this property. At

the lowest order sN0=1, N1=0d, Hij
sedk̂ik̂ j=Hij

szdnin jP2
0 with

P2
0=

1

2
s3 cos2 u−1d, and Z= 3

4
Hn

szd
sin2 u.

Since the spherical harmonic decomposition required for

the expansion of directionality to higher order is entirely

standard, we consider the expansion of polarization to higher

order. We will construct the axisymmetric tensor spherical

harmonics of the first order beyond Hszd, without, however,

presenting derivations. We noted at the end of Sec. VII B the

existence of TSH belonging to the irreducible representations

of dimensions 5, 7, and 9. We find exactly one axisymmetric

TSH belonging to each of these representations. That corre-

sponding to the irreducible representation of dimension 5 is

generated by the suniqued axisymmetric quadratic polyno-

mial 2kz
2−kx

2−ky
2 by the differentiation process described in

Sec. VII B. The corresponding TSH is

A5 = 3
− 2kx

2 + 4ky
2 − 2kz

2 − 6kxky 3kxkz

− 6kxky 4kx
2 − 2ky

2 − 2kz
2 3kykz

3kxkz 3kykz − 2kx
2 − 2ky

2 + 4kz
2 4

s87d

so that

A5:P = 2k−2fskx
2 + ky

2d − 2kz
2g . s88d

Recalling the relation equation s25d,

Z = k−4f6skx
2 + ky

2d2 + 6skx
2 + ky

2dkz
2g = 6 sin2 u s89d

in agreement with s86d for n=0.
The TSH belonging to the irreducible representation of

dimension 7 prove to change sign under inversion through

planes containing the polar axis. We simply note the sagain
uniqued axisymmetric TSH,

A7 = 3
2kxky − kx

2 + ky
2 − 4kykz

− kx
2 + ky

2 − 2kxky 4kxkz

− 4kykz 4kxkz 0
4 s90d

for which e=0 and Z=10ik−3kzskx
2+ky

2d=10i sin2 u cos u, in

agreement with s86d for n=1. The inversion antisymmetry

implies that Z is purely imaginary.

The axisymmetric TSH belonging to the irreducible rep-

resentation of dimension 9 is

A9 = 3
− 4kz

2 + 3kx
2 + ky

2 2kxky − 8kxkz

2kxky − 4kz
2 + 3ky

2 + kx
2 − 8kykz

− 8kxkz − 8kykz 8kz
2 − 4skx

2 + ky
2d
4
s91d

so that
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A9:P = k−4f24kz
2skx

2 + ky
2d − 3skx

2 + ky
2d2 − 8kz

4g s92d

and

Z = k−4f30kz
2skx

2 + ky
2d − 5skx

2 + ky
2d2g

= 5 sin2 us7 cos2 u − 1d s93d

in agreement with s86d provided terms with both n=0 and

n=2 are included.

VIII. CONCLUSIONS AND PERSPECTIVES

We summarize the main points of this paper as follows:

s1d The description of weak anisotropy by tensor functions

of wave number k alone requires two tensors as in Eq.

s41d. These tensors represent the distinct effects of di-
rectional anisotropy and polarization anisotropy.

8–10

Since a weakly anisotropic spectral model based on a

single tensor H imposes some fixed proportionality

Hsed=lHszd as shown by Eq. s48d, such models cannot be
consistent with both the short- and the long-time results

equations s53d and s59d. The reduction to a single tensor
function of k compromises the kinematics by introduc-

ing implicit assumptions about anisotropy, usually that

directional anisotropy vanishes. We emphasize in par-

ticular that the correlation tensor cannot be uniquely and

self-consistently reconstructed in terms of the Reynolds

stresses alone.

s2d Some special cases of anisotropy were considered,

namely short-time response of turbulence to arbitrary

strain and the long-time nonlinear response of turbu-

lence to small strain. Polarization and directional aniso-

tropy are related differently in each limit; consequently,

a model based on a single spherical average cannot be

consistent with both limits. Turbulence under rapid rota-

tion leads to a conclusion opposite to that usually

adopted in models, namely dominant directional aniso-

tropy and vanishing polarization.

s3d The description of anisotropy by two tensor functions

Hse,zdsk , td was exhibited as the lowest order in an infi-

nite expansion in scalar and tensor spherical harmonics

generated by the SO3 decomposition. In this case, polar-

ization and directional anisotropy are both described by

a traceless second-rank tensor, but the description be-

comes more complex at higher order.

To conclude, we note some important open issues for

anisotropic turbulence. The first is the question of connecting

the higher-order coefficients in SSH and TSH expansions to

spherically averaged higher-order moments of the spectral

tensor. A related question is whether it is possible to model

the higher-order terms by tensor products of Hsed, Hszd, and

the mean velocity gradient ]Ūi /]x j if a mean flow is present.

Recent studies in rotating
13

and in stably stratified

turbulence
14
have confirmed that the anisotropy identified by

the angle distribution of Eskd can be very large, and is only
reflected by small or moderate values of Hij

e . In such cases,

the SSH expansion of R would need to be carried out to

extremely high order. This expansion is unlikely to be prac-

tical; another approach to strong anisotropy using high angu-

lar resolution of the energy spectrum in the axisymmetric

case has been initiated by Bellet et al.13 and Liechtenstein

et al.14

APPENDIX: HELICAL ANISOTROPIC TURBULENCE

Helicity has been assumed to vanish in the present de-

velopments, so that the statistics have been assumed to be

invariant under the inversion k→−k. This assumption has

been made largely for simplicity, but it is not difficult to

extend the formalism of anisotropic kinematics without it.

We briefly describe the results.

The symmetry property R̃ijsx ,x8 ; td= R̃ jisx8 ,x ; td is a

trivial consequence of the definition equation s1d. It implies
that in homogeneous turbulence, the spectral tensor satisfies

the Hermitian symmetry condition

Rijskd = R jiskd* = R jis− kd . sA1d

Separating R into its real and imaginary parts and applying

Eq. sA1d,

RhRijskdj + iIhRijskdj =RhR jiskdj − iIhR jiskdj

=RhR jis− kdj + iIhR jis− kdj sA2d

thus the real part of R is symmetric and invariant under

inversion and its imaginary part is antisymmetric and

changes sign under inversion.

The decomposition of R in Eq. s9d explicitly ignored the
possibility of an antisymmetric contribution, on the basis that

R was assumed real and symmetric. Without that restriction,

we should write

R = 3
e 0 0

0 e 0

0 0 0
4 + 3

d b* 0

b − d 0

0 0 0
4 , sA3d

where b=b8+ ib9 is complex. Alternatively, in terms of the

matrices M1 and M2 of Eq. s12d and the basic antisymmetric
matrix

A = i3
0 − 1 0

1 0 0

0 0 0
4 , sA4d

we have

R = eP + dM1 + b8M2 + b9A = eP +RsZMd +HA , sA5d

where now Z=d+ ib8 and H=b9. Since there can only be one

linearly independent antisymmetric matrix with the property

Aijki=Aijk j=0, we must have Aij= ıeijmk̂m, where eijm is the

alternating third-order sRiccid tensor. Thus,

IhRijskdj =Hskdeijmk̂m. sA6d

As before, for the application of the formalism of the helical

mode decomposition to this problem, we refer to Cambon

and Jacquin
8
and Cambon et al.10

Helicity is defined by
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H =
1

2
kuivil = −

1

2
ieimnE kmRniskdd3k . sA7d

It is evident that only the antisymmetric part of R can con-

tribute, so that

H =
1

2
eimnE kmHskdenipk̂pd3k

=
1

2
sdiidmp − dimdipdE k−1kmkpHskdd3k

=E kHskdd3k .

Concerning the analysis of helical anisotropic turbu-

lence, we note that helicity is characterized by the scalar

Hskd, for which an expansion in even-order scalar spherical
harmonics is possible, because Hs−kd=Hskd. Nevertheless,
Eq. sA6d shows that the spherical average of IhRj vanishes;
therefore, helicity makes no contribution to either Hsed or

Hszd. The analysis of anisotropic helicity would therefore be-

gin with consideration of the weighted averages

ekmIhRijskdjd3k, which are nonzero because of the odd par-
ity of IhRijskdj under inversions.
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