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Abstract :

The Support Vector Machine (SVM) is an acknowledged powerful tool for build-
ing classifiers, but it lacks flexibility, in the sense that the kernel is chosen prior
to learning. Multiple Kernel Learning (MKL) enables to learn the kernel, from
an ensemble of basis kernels, whose combination is optimized in the learning
process. Here, we build on MKL to address the situations where there is a group
structure among kernels that is believed to be relevant for the classification task.
We develop the theoretical and the algorithmic aspects of learning with groups
of kernels. Our formulation of the learning problem encompasses several setups,
including MKL, where more or less emphasis is given to the group structure. We
characterize the convexity of the learning problem, and provide a general wrap-
per algorithm for computing solutions. Finally, some experiments illustrate the
behavior of several instances of our method.
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1 Motivation

Kernel methods have been extensively used in learning problems (Schölkopf & Smola,
2001). In these models, the observations are implicitly mapped in a feature space via a
mapping Φ : X → H, where H is a Reproducing Kernel Hilbert Space (RKHS) with
reproducing kernel K : X × X → R.

We address here the problem of learning the kernel in Support Vector Machines
(SVM) and related methods. Indeed, the kernel is crucial in many respects, and its
appropriate choice is essential to the success of kernel methods. Formally, the primary
role of K is to define the evaluation functional in H:

∀f ∈ H, f(x) = 〈f, K(x, ·)〉H ,

but it should be kept in mind that K also defines

• H itself, since ∀f ∈ H, f(x) =
∞
∑

i=1

αiK(xi,x) ;

• a metric, and hence a smoothness functional in H: ||f ||2H =

∞
∑

i=1

∞
∑

j=1

αiαiK(xi,xj) ;

• a similarity between pairs of observations, via the mapping Φ: K(x,x′) =

〈Φ(x),Φ(x′)〉H .

In this paper, we devise a framework where kernels are learned in a way to favor
the selection of variables, or groups of variables. Section 2 motivates our approach
while briefly reviewing the different advances in extending kernel methods beyond the
predefined kernel setup. We then follow in Section 3 by considering some recent de-
velopments in variable selection that are relevant for our aims. Section 4 describes our
framework. The associated algorithm is detailed in Section 5, and is tested in Section
6. We then conclude the paper in Section 7, which describes possible extensions left for
future work.

2 Flexible Kernel Methods

From now on, we restrict our discussion to classification, where, from a learning set
S = {(xi, yi)}n

i=1 of pairs of observations and label (xi, yi), one aims at building a
decision rule that predicts the class label y of any observation x. We furthermore focus
on the binary case, where (xi, yi) ∈ X × {±1}. However, it should be kept in mind
that most of our observations carry on to other settings, such as multiclass classification,
clustering or regression with kernel methods.
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2.1 Support Vector Machines

SVM build the decision rule sign (f⋆(x) + b⋆), where the function f⋆ and the offset b⋆

are defined as the solution of 1











min
f,b,ξ

1

2
||f ||2H + C

∑

i

ξi

s. t. yi(f(xi) + b) ≥ 1 − ξi , ξi ≥ 0 , 1 ≤ i ≤ n .

(1)

The regularization parameter C is the only adjustable parameter in this procedure. This
is usually not flexible enough to provide good results when the kernel is chosen prior
to seeing data. Hence, most applications of SVM incorporate a mechanism for learning
the kernel.

2.2 Learning the Kernel

Cross-validation is the most rudimentary, but also the most common way to learn the
kernel. It consists in (i) defining a family of kernels (e.g. Gaussian), indexed by one
or more parameters (e.g. bandwidth), the so-called kernel hyper-parameters, then (ii)
running the SVM algorithm on each hyper-parameter setting, and (iii) finally choosing
the hyper-parameter minimizing a cross-validation score.

A thorough discussion of the pros and cons of cross-validation is out of the scope of
this paper, but it is clear that this approach is inherently limited to one or two hyper-
parameters and few trial values. This observation led to several proposals allowing for
more flexibility.

2.2.1 Filters, Wrappers & Embedded Methods

Learning the kernel amounts to learn the feature mapping. It should thus be of no
surprise that the approaches investigated bear some similarities with the ones developed
for variable selection, where one encounters filters, wrappers and embedded methods
(Guyon & Elisseeff, 2003). Some general frameworks do not belong to a single category
(Ong et al., 2005), but the distinction is appropriate in most cases.

In filter approaches, the kernel is adjusted before building the SVM, with no explicit
relationship to the objective value of Problem (1). For example, the kernel target align-
ment of Cristianini et al. (2002) adapts the kernel to the available data without training
any classifier.

In wrapper algorithms, the SVM solver is the inner loop of two nested optimizers,
whose outer loop is dedicated to adjust the kernel. This tuning may be guided by various
generalization bounds (Cristianini et al., 1999; Weston et al., 2001; Chapelle et al.,
2002).

1To lighten notations, the range of indexes is often omitted in summations, in which case: indexes i and
j refer to examples and go from 1 to n; index m refers to kernels and goes from 1 to M ; index ℓ refers to
groups of kernels and goes from 1 to L.
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Kernel learning can also be embedded in Problem (1), with the SVM objective value
minimized jointly with respect to the SVM parameters and the kernel hyper-parameters
(Grandvalet & Canu, 2003). Our approach, which belongs to this family of methods,
is inspired by the Multiple Kernel Learning (MKL) framework originally developed by
Lanckriet et al. (2004).

2.2.2 Multiple Kernel Learning

MKL is a joint optimization problem of the coefficients of the SVM classifier and a
convex combination of kernels, defining the new SVM kernel

K(x,x′) =
∑

m

σmKm(x,x′) , (2)

where σ1, . . . , σM are coefficients to be learned under the convex combination con-
straints

∑

m

σm = 1 , σm ≥ 0 , 1 ≤ m ≤ M . (3)

Bach et al. (2004) proposed an interesting formulation of the MKL problem:































min
f1,...,fM ,

b,ξ

1

2

(

∑

m

‖fm‖Hm

)2

+ C
∑

i

ξi

s. t. yi

(

∑

m

fm(xi) + b

)

≥ 1 − ξi , ξi ≥ 0 , 1 ≤ i ≤ n ,

(4)

whose solution leads to a decision rule of the form sign (
∑

m f⋆
m(x) + b⋆). This ex-

pression of the learning problem is remarkable in that it only deviates slightly from the
original SVM problem (1). The squared RKHS norm in H is simply replaced by a
mixed-norm, with the standard RKHS norm within each feature space Hm, and an ℓ1
norm in R

M on the vector built by concatenating these norms. This ℓ1 norm encour-
ages sparse solutions, that is, solutions where some functions fm have zero norm. In
this respect, the MKL problem may be seen as the kernelization of the group-LASSO
(Yuan & Lin, 2006).

2.2.3 Composite Kernel Learning

MKL may be used in different prospects. When the individual kernels Km represent
a series, such as Gaussian kernels with different scale parameters, MKL may be used
as an alternative to cross-validation. When the input data originates from M differents
sources, each kernel may be affiliated to one input variable, and the goal may be to
select relevant input variables.

However, MKL should not be expected to provide a fully satisfactory answer when
several kernels pertain to one input variable. In this situation, the sparseness mechanism
of MKL does not favor solutions discarding all the kernels computed from an irrelevant
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input. Hence, although most of the related coefficients should vanish in combination
(2), spurious correlation may cause all irrelevant input variables to participate to the
solution.

The flat combination of kernels in MKL does not include a mechanism to cluster the
kernels related to one input variable. In order to direct the selection of kernels towards
predefined groups, one has to define a group structure among kernels, which will guide
the selection process through the organization of the kernel combination. This type of
hierarchy among variables has been investigated for subset selection methods in linear
models (Szafranski et al., 2008; Zhao et al., to appear). We briefly recapitulate the
general framework in the following section, before going into more technical details
and discussing its adaptation to kernel learning in Section 4.

3 Grouped and Hierarchical Selection

The introduction of ℓ1 penalties, with the seminal paper of Tibshirani (1996) on the
LASSO, gave rise to many important theoretical and practical advances in the statistics
and machine learning fields. As stated in Section 2.2.2, MKL itself belongs to the se-
ries of algorithms affiliated to the LASSO, through its relationship with group-LASSO.
In this lineage, Zhao et al. (to appear) defined the very general Composite Absolute
Penalties (CAP) family, whose definition is given below.

3.1 Composite Absolute Penalties

Consider a linear model with M parameters, β = (β1, . . . , βM )t, and let I =
{1, . . . ,M} be a set of index on these parameters. A group structure on the parameters
is defined by a series of L subsets {Gℓ}L

ℓ=1, where Gℓ ⊆ I . Additionally, let {γℓ}L
ℓ=0

be L + 1 norm parameters. Then, the member of the CAP family for the chosen groups
and norm parameters is

Ω =
∑

ℓ

(

∑

m∈Gℓ

|βm|γℓ

)

γ0
γℓ

. (5)

Mixed-norms correspond to groups defined as a partition of the set of variables. A
CAP may also rely on nested groups, G1 ⊂ G2 ⊂ . . . ⊂ GL, and γ0 = 1, in which case
it favors what Zhao et al. (to appear) call hierarchical selection, that is, the selection of
groups of variables in the predefined order {I \GL}, {GL\GL−1}, . . . , {G2\G1}, G1.
This example is provided here to stress that this notion of hierarchy differs from the one
used by Szafranski et al. (2008), which is recalled below.

3.2 Hierarchical Penalization

Hierarchical penalization was devised for the same type of model than the ones for CAP.
The model parameterized by β is fitted by minimizing a differentiable loss function
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J(·), subject to sparseness constraints among and within groups:






































min
β,σ1,σ2

J(β) + λ
∑

ℓ

∑

m∈Gℓ

β2
m√

σ1,ℓ σ2,m

s. t.
∑

ℓ

dℓ σ1,ℓ = 1 , σ1,ℓ ≥ 0 , 1 ≤ ℓ ≤ L

∑

m

σ2,m = 1 , σ2,m ≥ 0 , 1 ≤ m ≤ M ,

(6)

where λ is a Lagrange parameter that controls the amount of shrinkage, and dℓ is the
size of group ℓ. Here, the groups partition the set of variables, and the hierarchy refers
to the tree-structure of the shrinking coefficients: σ2,m shrinks parameter βm, while
σ1,ℓ shrinks the parameters for group Gℓ. In the words of Zhao et al. (to appear), the
objective here is grouped variable selection.

One can show that the minimizer of Problem (6) is the minimizer of

min
β

J(β) + λ





∑

ℓ

d
1
4

ℓ

(

∑

m∈Gℓ

|βm| 43
)

3
4





2

,

which is essentially a CAP estimate, where parameter dℓ only accounts for the group
sizes. The inner ℓ 4

3
norm and the outer ℓ1 norm form a mixed-norm penalty that will be

denoted ℓ( 4
3 , 1). The overall penalizer favors sparse solutions at the group level, with

few leading coefficients within the selected groups (Szafranski et al., 2008).

4 Putting Things Together

The MKL problem has been formalized as a quadratically constrained program by
Lanckriet et al. (2004), then as a second-order cone program by Bach et al. (2004).
More recently, other formulations led to wrapper algorithms, where the optimization
with respect to kernel hyper-parameters is performed in an outer loop that wraps a stan-
dard SVM solver. The outer loop is cutting planes for Sonnenburg et al. (2006), and
gradient descent for Rakotomamonjy et al. (2007). Wrapper algorithms have appeal-
ing features: they benefit from the developments of solvers specifically tailored for the
SVM problem in the inner loop; they allow to address large-scale problems; they are
multipurpose, since the SVM inner loop may be replaced by another algorithm with
little or no adjustments.

We chose to build on the gradient-based MKL. First, it has been shown to be more
efficient than the SILP approach of Sonnenburg et al. (2006), thanks to the stability
of the updates performed in the outer loop, which induces good initializations for the
inner loop solver (Rakotomamonjy et al., 2007). Second, and even more important
for our purpose, the gradient-based MKL relies on a formulation that is amenable to
the extension to groups of kernels, thanks to the smooth formulation of hierarchical
penalization (6).
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4.1 Gradient-Based Multiple Kernel Learning

Problem (4) is not differentiable at ||fm||Hm
= 0, a difficulty that involves a consider-

able algorithmic burden. The MKL formulation of Rakotomamonjy et al. (2007) can
be considered as a variational form of Problem (4), where M new variables σ1, . . . , σM

are introduced in order to avoid these differentiability issues. The resulting problem,
which is equivalent to Problem (4), is stated as: 2















































min
f1,...,fM ,

b,ξ,σ

1

2

∑

m

1

σm

||fm||2Hm
+ C

∑

i

ξi

s. t. yi

(

∑

m

fm(xi) + b

)

≥ 1 − ξi , ξi ≥ 0 , 1 ≤ i ≤ n

∑

m

σm = 1 , σm ≥ 0 , 1 ≤ m ≤ M .

(7)

The constraints expressed on the last line encourage sparseness in σm , which induces
sparseness in fm. As already mentioned in Section 2.2.2, the sparseness applies at
the kernel level, ignoring the group structure. The latter is taken into account in the
formulation proposed in the following section.

4.2 Learning with Groups of Kernels

We now generalize hierarchical penalization to formulate a MKL problem, taking into
account the group structure. We build on hierarchical penalization by addressing kernel
methods that consider penalties in RKHS instead of parametric function spaces. We
furthermore provide a smooth variational formulation for arbitrary mixed-norm penal-
ties ℓ(p, q), enabling to consider a wide variety of problems subsuming MKL. Our
formulation of the Group Kernel Learning (GKL) is as follows:






























































min
f1,...,fM ,

b,ξ,σ1,σ2

1

2

∑

ℓ

σ
−p
1,ℓ

∑

m∈Gℓ

σ
−q
2,m||fm||2Hm

+ C
∑

i

ξi

s. t. yi

(

∑

m

fm(xi) + b

)

≥ 1 − ξi , ξi ≥ 0 , 1 ≤ i ≤ n

∑

ℓ

dℓ σ1,ℓ = 1 , σ1,ℓ ≥ 0 , 1 ≤ ℓ ≤ L

∑

m

σ2,m = 1 , σ2,m ≥ 0 , 1 ≤ m ≤ M,

(8)

where p and q are exponents to be set according to the problem at hand.

Before considering particular settings of interest, we state below three helpful propo-
sitions. The first one gives a more interpretable formulation of Problem (8); the second

2Here and in what follows, u/v is defined by continuation at zero as u/0 = ∞ if u 6= 0 and 0/0 = 0.
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one presents necessary conditions for convexity, based on the latter formulation; finally,
the third one provides sufficient conditions for the convexity of formulation (8), that will
guaranty the convergence towards the global minimum for the algorithm described in
Section 5.

Proposition 1

CAP Formulation: Problem (8) is equivalent to the following MKL problem with a

CAP-like penalty on the RKHS norms:



































min
f1,...,fM ,

b,ξ

1

2





∑

ℓ

d
γ∗

ℓ

(

∑

m∈Gℓ

||fm||γHm

)

γ0
γ





2
γ0

+ C
∑

i

ξi

s. t. yi

(

∑

m

fm(xi) + b

)

≥ 1 − ξi , ξi ≥ 0 , 1 ≤ i ≤ n ,

(9)

with γ = 2
q+1 , γ0 = 2

p+q+1 and γ∗ = 1 − γ0

γ
. Note that the outer exponent 2

γ0
only

influences the strength of the penalty, not its type. Hence, the penalty in the objective

function (9) differs from (5) in the RKHS norms || · ||Hm
and in the parameters dℓ that

accommodate for group sizes.

Sketch of proof: Let L be the Lagrangian of problem (8), the first order optimality

conditions for σ1,ℓ and σ2,m are ∂L
∂σ1,ℓ

= 0 and ∂L
∂σ2,m

= 0, that is:

−p

2
σ
−(p+1)
1,ℓ

∑

m∈Gℓ

σ
−q
2,m||fm||2Hm

+ λ1 dℓ − η1,ℓ = 0

−q

2
σ
−p
1,ℓ σ

−(q+1)
2,m ||fm||2Hm

+ λ2 − η2,m = 0 ,

where λ1 and λ2 are the Lagrange multipliers corresponding to the equality constraints

on σ1 and σ2 respectively; η1,ℓ and η2,m are the Lagrange multipliers corresponding to

the inequality constraints on σ1,ℓ and σ2,m respectively.

After some tedious algebra, we obtain the optimality conditions for σ1,ℓ and σ2,m

σ1,ℓ =

(

d−1
ℓ sℓ

)

q+1

p+q+1

∑

ℓ

d
p

p+q+1

ℓ (sℓ)
q+1

p+q+1

, (10)

σ2,m =
||fm||

2
q+1

Hm

(

d−1
ℓ sℓ

)− p
p+q+1

∑

ℓ

d
p

p+q+1

ℓ (sℓ)
q+1

p+q+1

for m ∈ Gℓ , (11)

where sℓ =
∑

m∈Gℓ

||fm||
2

q+1

Hm
.

Plugging these conditions in Problem (8) yields the claimed result. �
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Proposition 2

Necessary Conditions for Convexity: Problem (8) is not convex if |q| > 1 or |p+q| >

1.

Proof: Proposition 1 shows that Problem (8) can be reduced to Problem (9), which

is convex when the CAP penalty (5) is convex. The conditions of convexity for this

penalty are γ ≥ 1 and γ0 ≥ 1 (Zhao et al., to appear), yielding the claimed condition.

�

Proposition 3

Sufficient Conditions for Convexity: Problem (8) is convex if 0 ≤ q ≤ 1 and p + q =
1.

Proof: Problem (8) is convex if J(x, y, z) =
x2

ypz(1−p)
is convex for positive y and z.

To show this, we show that its Hessian matrix H is positive-definite by computing its

decomposition in the sum of two positive-definite matrices:

ypz(1−p)H = 2





1
−xp

y
x(p−1)

z









1
−xp

y
x(p−1)

z





t

+ x2(1 − p)







0
√

p
y

−
√

p

z













0
√

p
y

−
√

p

z







t

.

�

Regarding the values of p and q ensuring the convexity, we pick the following partic-
ular cases of interest:

• p = 0, q = 1 yields a LASSO type penalty on the RKHS norms. It results in the
generalization of the group-LASSO known as MKL, as formulated in (4);

• p = 1, q = 0 yields a group-LASSO type penalty on the RKHS norms. It results
in another MKL, with L effective kernels Kℓ, defined as Kℓ =

∑

m∈Gℓ

Km;

• p = q = 1
2 yields a hierarchical-penalization type penalty on the RKHS norms. It

is a true GKL, where there are M effective kernels, and where the penalty favors
sparse solutions at the group level, with few leading kernels within the selected
groups.

Hence, when p goes from zero to one, with q = 1− p, the penalty gives more and more
emphasis to the group structure. For most applications where convexity is a key issue,
we recommend the balanced setup p = q = 1

2 .

Note however that convex penalties restrict the sparseness of the solution to either the
group level or the kernel level. In Section 6, we will illustrate that giving up convexity
may turn out to be an interesting option when considering interpretability issues.
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5 Algorithm

5.1 A Gradient-Based Wrapper

To address Problem (8), we opt for a wrapper scheme, by considering the following
constrained optimization problem:































min
σ1,σ2

J(σ1,σ2)

s. t.
∑

ℓ

dℓ σ1,ℓ = 1 , σ1,ℓ ≥ 0 , 1 ≤ ℓ ≤ L

∑

m

σ2,m = 1 , σ2,m ≥ 0 , 1 ≤ m ≤ M ,

where J(σ1,σ2) is defined as the objective value of



























min
f1,...,fM ,

b,ξ

1

2

∑

ℓ

σ
−p
1,ℓ

∑

m∈Gℓ

σ
−q
2,m||fm||2Hm

+ C
∑

i

ξi

s. t. yi

(

∑

m

fm(xi) + b

)

≥ 1 − ξi , ξi ≥ 0 , 1 ≤ i ≤ n .

(12)

In the inner loop, the problem is optimized with respect to f1, . . . , fM , b and ξ,
considering that (σ1,σ2) are fixed. In the outer loop, (σ1,σ2) are updated to decrease
the objective function of Problem (8), with fm, b and ξ being fixed.

From Equations (10) and (11), the outer loop can be carried out in closed form. How-
ever, this approach lacks convergence guarantees and may lead to numerical problems,
in particular when some elements of σ1 or σ2 approach zero. These updates should
thus be reserved for initializing the algorithm, so as to provide a rapid decrease of the
objective function.

After the initialization phase, our approach to solve Problem (8) draws on the
gradient-based MKL algorithm of Rakotomamonjy et al. (2007). We still have the
wrapper scheme described above, except that the outer loop is a simple projected gradi-
ent descent update, which can be computed using that the objective function J(σ1,σ2)
is actually an optimal SVM objective value.

5.2 Computing the Gradient

The dual formulation offers a convenient means to compute the gradient ∇J(σ1,σ2).
The derivation of the Lagrangian of Problem (12), which is omitted here for brevity,
shows that its dual formulation is identical to the one of a standard SVM using the
aggregated kernel Kσ1,σ2

defined as

Kσ1,σ2
(x,x′) =

∑

ℓ

σ
p
1,ℓ

∑

m∈Gℓ

σ
q
2,mKm(x,x′) .
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Hence, the dual problem takes the usual form






























max
α

− 1

2

∑

i,j

αiαjyiyjKσ1,σ2
(xi,xj) +

∑

i

αi

s. t.
∑

i

αiyi = 0 , C ≥ αi ≥ 0 , 1 ≤ i ≤ n ,

(13)

(14)

which can be solved by any SVM solver.

As J(σ1,σ2) is defined as the optimal objective value of the convex Problem (12),
strong duality applies, and J(σ1,σ2) is also the dual objective value, that is

−1

2

∑

i,j

α⋆
i α

⋆
jyiyjKσ1,σ2

(xi,xj) +
∑

i

α⋆
i , (15)

where α⋆ solves Problem (13).

The existence and computation of the derivatives of optimal value functions such as
J(·) have been largely discussed in the literature. For our purpose, an appropriate refer-
ence is (Bonnans & Shapiro, 1998, Theorem 4.1), which, in a nutshell, states here that
the differentiability of J(σ1,σ2) is ensured by the unicity of α⋆, and by the differen-
tiability of (15). 3 Furthermore, the derivatives of J(σ1,σ2) can be computed as if α⋆

were not to depend on (σ1,σ2).

Thus, the gradient ∇J(σ1,σ2) is simply the gradient of the dual function (15), where
we take into consideration the dependence of Kσ1,σ2

in (σ1,σ2):

∂J

∂σ1,ℓ

=−
p σ

(p−1)
1,ℓ

2

∑

i,j

α⋆
i α

⋆
jyiyj

∑

m∈Gℓ

σ
q
2,mKm(xi,xj)

∂J

∂σ2,m

=−
q σ

p
1,ℓσ

(q−1)
2,m

2

∑

i,j

α⋆
i α

⋆
jyiyjKm(xi,xj) ,

Then, we have all the ingredients to apply the machinery developed for MKL by Rako-
tomamonjy et al. (2007).

6 Experiments

This section presents a set of experiments on two datasets. In the following, MKL
stands for the MKL algorithm (Rakotomamonjy et al., 2007), GKL 1

2
is a convex version

of our algorithm, with p = q = 1
2 (that is a ℓ( 4

3 , 1) mixed-norm), and GKL1 is a non-
convex version of our algorithm, with p = q = 1 (that is a ℓ(1, 2

3 ) mixed-norm).

3The unicity of α⋆ is ensured provided that the Gram matrix built from kernel Kσ1,σ2
is positive-definite.

To enforce this property, a small ridge may be added to the diagonal.
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6.1 Spambase

The spambase problem, from UCI machine learning repository (Asuncion & Newman,
2007), consists in predicting whether an email is a spam or not. The dataset is composed
of 57 continuous attributes, divided in 4 groups. The first group is composed of 42 at-
tributes concerning word frequencies; the second group is composed of 6 attributes
concerning specific numbers frequencies; the third group is composed of 6 attributes
concerning punctuation frequencies; the fourth group is composed of 3 attributes char-
acterizing the distribution of capital letters.

We have randomly picked 30 % of the dataset (1381 examples) for testing, and then
divided the 3220 remaining examples in 10 distinct training sets. The parameter C has
been tested for 7 logarithmically spaced values, varying from 1 to 106, and has been
selected by 5-fold cross-validation. The classification accuracy was computed on the
test set.

The different kernels have been structured according to the 4 groups of variables. For
all groups, multivariate and univariate gaussian kernels have been built. The bandwidths
of the gaussian kernels go from 10−2 to 101. Thus, 244 kernels have been used to solve
this classification problem. Each training set has been standardized before constructing
the kernels, and each kernel has been weighted so that the trace is equal to 1.

Table 6.1 reports the prediction accuracy, the number of selected kernels, and the
running time for a classical SVM, MKL and GKL 1

2
. Note that the SVM has been

trained with the mean of the 244 kernels built. The results have been averaged, using the
estimates obtained from the 10 training sets on the testing set. For fair time comparison,
we have initialized the MKL algorithm with the procedure described in section 5. For
MKL and GKL 1

2
algorithms, we have used the same termination criterion. It is based

both on the variation of the objective value J(σ)
(

J(σ)t−1−J(σ)t

1+J(σ)t ≤ ǫ
)

, and on the

variation of the σ parameters
(

max
m

∣

∣

∣

σt−1
m −σt

m

1+σt
m

∣

∣

∣
≤ √

ǫ
)

, where ǫ = 10−12, and σ =

(σ1,σ2) for GKL.

Algorithms Accuracy # Kernels Time (s)
SVM 93.33 ± 0.73 244 1.13 ± 0.33
MKL 91.19 ± 3.31 131.20 ± 43.33 58.37 ± 16.44
GKL 1

2
93.09 ± 0.84 234.20 ± 5.59 46.02 ± 5.85

Table 1: Average performances for 3 different algorithms on the spambase dataset. The
prediction accuracy, the number of selected kernels, and the running time are reported.

In terms of accuracy, SVM and GKL 1
2

perform slightly better than MKL, with an
insignificant advantage for SVM. Concerning sparseness, MKL uses fewer kernels than
GKL 1

2
, for which no groups are eliminated. Note that previous analyzes have shown
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that all groups of variables are relevant for classification (Hastie et al., 2001). Applying
a ℓ(1, q) mixed-norm with q > 1 would have been more appropriate on this dataset, and
will be investigated in further experiments. Indeed, it would achieved a better selection:
with GKL 1

2
, the number of kernels remains important because the ℓ 4

3
norm applied

within groups is not of a sparse nature, contrary to the ℓ1 norm of the MKL. Finally,
the running time of GKL 1

2
is slightly better than that of MKL. The SVM is much faster

since there is no weighting parameter to optimize.

6.2 Channel Selection for Brain-Computer Interface

This experiment deals with single trial classification of EEG signals coming from Brain-
Computer Interface (BCI). Depending on each BCI paradigm, these EEG signals are
recorded from specific electrode positions. However, as stated by Schröder et al. (2005),
automated channel selection should be performed for each single subject since it leads
to better performances or a substantial reduction of the number of useful channels.
Reducing the number of channels involved in the decision function is of primary im-
portance for BCI real-life applications, since it makes the acquisition system easier to
use and to set-up.

We use here the dataset from the BCI 2003 competition for the task of interfacing the
P300 Speller (Blankertz et al., 2004). The dataset consists in 7560 EEG signals paired
with positive or negative stimuli responses. The signal, processed as in (Rakotoma-
monjy et al., 2005), leads to 7560 examples of dimension 896 (14 time frames for each
of the 64 channels).

Here, GKL is particularly relevant for the classification objectives, since we aim at
classifying the EEG trials with as few channels as possible. Furthermore, it is also likely
that some time frames are irrelevant, so that variable selection hould also be carried out
within each channel. In order to reach a sparse solution at the channel and the time
frame levels, we choose to explore a non-convex parametrization of GKL implementing
the ℓ(1, 2

3 ) mixed-(pseudo)norm penalty, (that is p = 1 and q = 1), which enables to
get sparseness within and between groups.

The 896 features extracted from the EEG signals are not tranformed before classifi-
cation: we do not use any kernelization. However, to unify the presentation, we will
refer to these features as linear kernels. Hence, in this application, where the kernels
related to a given channel form a group of kernels, we have to learn σ1,ℓ, ℓ = 1, · · · , 64
and σ2,m, m = 1, · · · , 896.

The experimental protocol is then the following: we have randomly picked 567 train-
ing examples from the datasets and used the remaining as testing examples. For each
parameter, C has been selected by retaining a small part of the training set as a valida-
tion set. Then the parameter which leads to the highest AUC has been selected. This
overall procedure has been repeated 10 times.

Using a small part of the examples for training can be justified by the use of ensem-
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ble of SVM (that we do not consider here) on a latter stage of the EEG classification
procedure (see for instance Rakotomamonjy et al. (2005)), whereas the AUC as a per-
formance measure is justified by how the EEG recognition is transformed into selected
character in the P300.

Table 6.2 summarizes the average performance of 3 different algorithms: a classi-
cal SVM, a MKL SVM, and our group kernel learning. The number of channels and
kernels selected by these algorithms have also been reported. Note that the classical
SVM have been trained with the mean of 896 kernels we deal with. Results show that
performances of the 3 algorithms are similar. However, we also note that the number of
channels selected by our algorithm is far smaller than the ones selected by MKL while
the number of kernels is larger.

Algorithms AUC # Channels # Kernels
SVM 83.87 ± 0.8 64 896
MKL 82.11 ± 1.7 48.5 ± 3 105.3 ± 14
GKL1 84.29 ± 1.2 24.2 ± 8 129.3 ± 41

Table 2: Average AUC performances of 3 different algorithms on the BCI datasets. The
number of channels and kernels involved in the decision function is also related.

Interpreting these results tells us that using GKL successfully leads to structured vari-
able selection. Interestingly, structuring the selection also yields to slight performance
improvements. These results corroborate prior knowledge and findings about BCI P300
Speller paradigms that is: only a subset of the 64 channels and time samples correspond-
ing to 300ms after the visual stimuli are mainly related to the class labels of the EEG
signals.

7 Conclusion and Further Works

This paper is at the crossroad of kernel learning and variable selection. From the former
viewpoint, we extended the multiple kernel learning problem to take into account the
group structure among kernels. From the latter viewpoint, we generalized the hierar-
chical penalization framework to kernel classifiers by considering penalties in RKHS
instead of parametric function spaces.

As a side contribution, we also provide a smooth variational formulation for arbritrary
mixed-norm penalties, enabling to tackle a wide variety of problems. This formulation
is not restricted to convex mixed-norm, a property that turns out to be of interest for
reaching sparser, hence more interpretable solutions.

Our approach is embedded, in the sense that the kernel hyper-parameters are opti-
mized jointly with the parameters of classifier to minimize the soft-margin criterion.
It is however implemented by a simple wrapper algorithm, for which the inner and
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the outer subproblems have the same objective function, and where the inner loop is a
standard SVM problem.

In particular, this implementation allows to use available solvers for kernel machines
in the inner loop. Hence, although this paper considered binary classification problems,
our approach can be readily extended to other learning problems, such as multiclass
classification, clustering, regression or ranking.
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