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The angular dependence (x-ray linear dichroism) of the Cr K pre-edge in MgAlO4:Cr®T spinel is
measured by means of x-ray absorption near edge structure spectroscopy (XANES) and compared
to calculations based on density functional theory (DFT) and ligand field multiplet theory (LFM).
We also present an efficient method, based on symmetry considerations, to compute the dichroism
of the cubic crystal starting from the dichroism of a single substitutional site. DFT shows that
the electric dipole transitions do not contribute to the features visible in the pre-edge and provides
a clear vision of the assignment of the 1s—3d transitions. However, DFT is unable to reproduce
quantitatively the angular dependence of the pre-edge, which is, on the other side, well reproduced
by LFM calculations. The most relevant factors determining the dichroism of Cr K pre-edge are
identified as the site distortion and 3d-3d electronic repulsion. From this combined DFT, LFM
approach is concluded that when the pre-edge features are more intense than 4 % of the edge jump,
pure quadrupole transitions cannot explain alone the origin of the pre-edge. Finally, the shape of
the dichroic signal is more sensitive than the isotropic spectrum to the trigonal distortion of the
substitutional site. This suggests the possibility to obtain quantitative information on site distortion
from the x-ray linear dichroism by performing angular dependent measurements on single crystals.

PACS numbers: 61.72.Bb, 78.70.Dm, 71.15.Mb

I. INTRODUCTION

Transition metal elements play an essential role in
physics (magnetic materials, superconductors...), coor-
dination chemistry (catalysis, metalloproteins) or geo-
physics (3d elements are major constituents of the Earth
and planets). To understand the properties that transi-
tion elements impart to the materials they are inserted in,
X-ray Absorption Near Edge Structure (XANES) spec-
troscopy has been widely used, since it provides unique
information on their local surrounding and electronic
structure. In particular, the position and intensity of the
localized transitions observed at the K pre-edge (1s—3d
transitions) are sensitive to the cation oxidation state,
the geometry of its environment (coordination number
and symmetry), and the degree of admixture between
p and d orbitals. For example, the shape and area of
the pre-edge are commonly used to quantify the redox
states of transition elements in crystals, glasses and co-
ordination complexes, b)ﬂ EEmparison to those recorded
on reference compounds.tBH However, it is not straight-
forward to obtain this kind of information on single crys-
tals. Indeed, it is well known that the XANES spectra
of non-cubic crystals show an angular dependence, when
the polarization and the direction of the incident x-ray
beam (here, designated as unit vectors, € and k, respec-
tively) are varied. For cubic crystals, the problem may
seem at first sight more simple. Electric dipole transi-
tions (e.g., 1s—p transitions) are isotropic. They con-
tribute mainly to the edge, but also to the pre-edge if

one of the three following situations is encountered : (i)
there is p-d intrasite hybridization (e.g., the crystallo-
graphic site does not show an inversion center), (ii) the
thermally activated vibrations remove the inversion cen-
ter, (iii) there is p-d intersite hybridization (in samples
highly concentrated in the investigated element). Elec-
tric quadrupole transitions are anisotropic and the cubic
crystal thus shows an angular dependence. The infor-
mation carried by the pre-edge features can be derived
for cubic crystals by taking advantage of this angular
dependence. In particular, the respective proportion of
electric dipole and quadrupole transitions in the pre-edge
can be derived, by measuring XANES spectra for yari-
ous known orientations (€,k) of the incident beamB In
addition, the symmetry of the crystallographic sites, that
host the investigated element, is often a subgroup of the
cubic group. The number of equivalent sites is given by
the ratio of the multiplicity of the space group and the
multiplicity of the point group. The XANES spectrum of
the cubic crystal is thus the average over the equivalent
sites of the individual site spectra. Hence, the derivation
of structural and electronic information for a single site is
not straightforward, which makes the use of group theory
and theoretical computations mandatory.

Among cubic oxides, spinels have attracted consid-
erable interest for their opthcgh electronic, mechani-
cal and magnetic properties.dtll In the Earth’s inte-
rior, the formatiEn of silicate spinels has major geophysi-
cal implications.B More specifically, MgAlyO4 spinels are
used in a broad range of applications, including opti-
cally transparent materials, catalyst supports, nuclear



FIG. 1: (Color online) Cubic cell of the spinel structure and
experimental setup. The four equivalent octahedral sites are
labeled according to the coordinates given in Table ||. Site
distortion has been slightly exagerated for clarity. The sample
is cut along the (110) plane (red) and rotated along the [110]
direction, while € and k are fixed in the laboratory system.
The figure corresponds to the experimental setup taken as
starting point (a0t = 0°). For this configuration, the [001]
axis of the cube is in the vertical plane, perpendicular to
¢ = [010] and k = [100].

waste management and cement castables.m’uﬂ Cr?t of-
ten substitutes for A3t in MgAl,Oy4, which causes a red
color and makes natural Cr-spinels valuable gemstones.
Cr3t is intentionally added to high-temperature refrac-
tory materials4o improve their thermal and mechani-
cal properties.td In MgAl,O4 spinel (Fd3m space group
symmetry), A>T cations occur at octahedral sites, which
exhibit D3q (or 3m) symmetry and build chains aljgned
along the six twofold axis of the cubic structure.Ed The
number of equivalent octahedral sites in the unit cell is
four, denoted hereafter as sites A, B, C and D, depending
on their direction of distortion, either [111], [111], [111]
or [111], respectively (Fig. ] and Tab. i) During the Al
to Cr substitution, the local D34 symmetry is retained
and the relaxed Cr-site remains centrosymﬁetric, which
indicates the absence of Cr 3d-4p mixing.l2 Hence, the
K pre-edge features arise from pure electric quadrupole
transitions (1s—3d) but an experimental evidence of this
is still lacking. As the Cr-site remains distorted in the
same direction as for the Al-site, four equivalent relaxed
sites are available for Cr. Hence, the electric dipole and
electric quadrupole absorption cross-sections, for a given
single crystal configuration, are expected to be different
for a Cr impurity located at site A, B, C or D, since
their orientations with respect to the incident beam are
different.

In this paper, we compare the experimental angular de-
pendence of the Cr K pre-edge MgAl,O4:Cr3t to those
obtained by theoretical calculations, combining a mono-

electronic approach based on density functional theory
(DFT) and multielectronic methods based on the lig-
and field multiplet theory (LFM). The monoelectronic
approach is usually dedicated to the study of delocalized
final states (e.g., the calculation of K-edge spectra) but
has also provided satisfactory r the study of Ti
K pre-edge in TiO4 and SrTiOgﬁ and also for the
study of Fe K pre-edge in FeS, Ed The multielectronic ap-
proach, usually dedicated to the study of localized final
states (e.g., K pre-edge, Lo 3 edges of 3d transition ele-
ments) has been succesfﬁl@ applied to the case of K pre-
edge in several systems. Our aim is to determine the
factors (site distortion, electronic interactions) prevail-
ing at the angular dependence of Cr K pre-edge in spinel
and to provide a comparison between the monoelectronic
and multielectronic approaches. We also present a pow-
erful method, based on symmetry considerations, to re-
duce the number of calculations needed to reconstruct
the angular dependence of the cubic crystal from that of
a single site. The paper is organized as follows. Section
IT is dedicated to the experimental work, including the
sample description, the X-ray absorption measurements
and analysis. Section III is devoted to the computational
work, including the theoretical framework (Sec. IIT A),
the details of DFT calculations (Sec. III B) and of the
multiplet calculations (Sec. III C). Results are presented
in Sec. IV and discussed in Sec. V.

II. EXPERIMENTS

A natural gem-quality red spinel single crys-
tal from Mogok (Burma), with composition
investi-

(1\/[%0.95Feo.01)0.96(Alz.ozcro,cﬁz.og047 was
gated (for details, see Ref. |L5)). The single crystal was
cut along the (110) plane (plotted in red on Figfl) and
orientated according to the Laue method.

Cr K-edge (5989 eV) XAS spectra were collected at
room temperature at beamline ID26 of the Europe
Synchrotron Radiation Facility (Grenoble, F‘rance)E
The energy of the incident radiation was selected using
a pair of He-cooled Si crystals with (111) orientation.
The spot size on the sample was approximatively
250x50 pum?. The orientated sample was placed on a
rotating holder at 45° with respect to the incident beam,
and turned around the [110] direction from a rotation
angle a,.t. The starting conﬁguration (arot = 0°)
corresponds to & = [010] and k = [100] (see Flgm The
(aror = 90°) configuration corresponds to € = [2,2,\/5
and k = [-1,2].
experimental setup, the maximum variation effect is
obtained by substracting the absorption recorded for
Qrot = 0° from that recorded for a,,, = 90°. One
spectrum was recorded every 15° from a,..; = 0° to
arot = 360°, which enables to reconstruct the complete
angular dependence of the crystal. The absorption was
measured by a photodiode fluorescence detector. For

For this sample cut and this



TABLE I: Coordinates of Cr atom and direction of site distortion for the four equivalent substitutional sites belonging to
the rhombohedral unit cell. We also give the coordinates of the twelve other sites, obtained from the previous by the three

translations of the fcc lattice (see text and Fig.ﬁl).

site identification direction of site distortion

Cr-coordinates in rhombohedral unit cell

Cr-coordinates in cubic cell

A [111] (17171) (l7§7§) ’ (07§7i) ’ (0717%)
B 1] 1 drh ato.lo
C [111] (3:2:%) (00.3), (0.3,0) , (5,00
D [111] (2:377) (1:3:1) » (1.0,3) 5 (5,0,7)
each a,; angle, ten pre-edge spectra ranging from 5987  ¢%(4,m)), which transform under rotation like thecorre-

to 5998 eV were recorded with an energy step of 0.05 eV
and averaged. Two additional scans were recorded
between 5985 and 6035 eV by step of 0.2 eV, in order to
merge the pre-edge on the XANES spectrum, and two
more spectra were recorded between 5950 and 6350 eV
by step of 0.5 eV, in order to normalize the XANES
to the K-edge jump far from the edge. Self-absorption
effects are negligible, because of the low Cr-content of
the sample.

III. THEORY

In this section, we recall the general expressions of the
electric dipole and quadrupole absorption cross-sections
for a cubic crystal and for a site with D3y symmetry
(Subsec. A). Then, we use the general method described
in Ref. @ to calculate the angular dependence of the cu-
bic crystal from that of a single site. This framework
is illustrated in the particular case of spinel. Finally,
we report the details of the monoelectronic and multi-
electronic calculations performed for substitutional Cr in
spinel (Subsec. B and C).

A. Theoretical framework
1. Absorption cross-sections for a cubic crystal

The total absorption cross-section for a crystal (cubic
or non-cubic), o, is expressed as:

o(&,k) = oP (&) + 0%(é,k) (1)

where o is the electric dipole cross-section and o@ is

the electric quadrupole cross-section. The expression
given above is valid in the absence of coupling between
the electric dipole and the electric quadrupole terms:
this condition is fulfilled if the system is either cen-
trosymmetric or if, at the same time, the system is non-
magnetic (no net magnetic moment on the absorbing
ion) and one uses exclusively linear polarization. For
Cr in MgAl,Oy, the two types of conditions are satis-
fied. The dipole and quadrupole cross-sections can be
expressed in function of spherical tensor components, re-
spectively (a”(0,0), o”(2,m)) and (09(0,0), 0@ (2,m),

sponding spherical harmonics (Yg, Y3 and Y7").E2 The
tensor components are functions of Aw, omitted for clar-
ity in this paper. The symmetries of the crystal restrict
the possible values of ¢”(2,m) and ¢ (4,m), as will be
precised hereafter for the cubic case.
The electric dipole cross-section for a cubic crystal,
D is isotropic (e.g., it does not depend on the direﬁ:on

O cub»

of the polarization vector) and is equal to o2, (0,0)

D (a D
Ucub(s) = Ucub(o’ 0) (2)

The electric quadrupole cross-section for a cubic crys-
tal, oib, is expressed, according to group theory (Ap-

pendix A), as:

. 20 1
oo, (8.k) =00, (0, 0)+\/ﬁ(Eikiﬁikiﬁgk?g)ﬂib(‘h 0),
3)
Q (0, 0) is the isotropic electric quadrupole cross-

cub
section, and ng(4,0) is a purely anisotropic electric

quadrupole term. The polarization unit vector € and
the wave unit vector k have their coordinates expressed
in the Cartesian reference frame of the cube.

where o

2. Absorption cross-sections for a site with Dsq symmetry

For a site with D34 symmetry, the reference frame is
chosen consistently with the symmetry operations of the
point group, i.e. Eith the z-axis parallel to the Cs5 axis
of the D34 groupEd The polarization and the wave unit
sin@ cos ¢
sinf sin ¢

cos @

vectors are expressed as: € =

cosf cos¢ cosy —sing siny
cosf sin¢ costp + cos¢ siny
—sinf cosvy

and k =

Hence, 6, which appears in the expression of € and
k, is the angle between € and the C3 axis.
The el@tric dipole absorption cross-section in Dsg is

given by:

L

V2

op,, (&) =D, (0,0) (3cos?0 — 1)op, (2,0). (4)



In order to determine op, (€) for any experimental
configuration (€), one needs first to determine o (0,0)

and O’Bsd (2,0), for example by performing calculations
for at least two independent orientations of €. The
isotropic term, op_ (0,0), can be calculated directly by

hoosin = ar .
choosing 6 arccos —z

The electric @Jadrupole absorption cross-section in
D34 is given by:

O Dua(&:K)
) . .
= ang (0,0) + 4/ ﬂ(?) sin? @ sin®1 — 1) Ung
1
+ ——=(35 sin?6 cos?# cos?
+5sin? 0 sin? ¢ — 4) o3 (4,0)
10 sinA[(2cos® 6 cos®tp — 1) cosf cos 3¢
— (3 cos?f — 1) sint) costp sin3¢) O'ng (4,3).  (5)

(2,0)

To determine agsd (é, E) for any experimental config-
uration (é,f{), one needs first to determine agw (0,0),
oggd(l 0), ogsd (4,0) and ogsd (4, 3), for example by per-
forming calculations for at least four independent orien-
tations (&.k).

8. From a single site Dsq to the cubic crystal

In order to reconstruct the angular dependence of the
cubic crystal from that of a single site with D34 sym-
metry, the tensor components have to be averaged over
the equivalent sites of the cubic cell. For the elec-
tric dipole cross-section, we need a relation between
(09,,(2,0), op,.(0,0)) and ¢, (0,0), and for the elec-
tric quadrupole cross-section, we need a relation be-
tween (o3, (0,0), 0B (2,0), agsd(4,0), 03,,(4,3)) and
( Cub(O 0), Cub(4 0)). To do so, we have used the formu-
las given in Ref. , which have been obtained from a
spherical tensor analysis. This general method uses the
symmetry operations of the crystal, which exchange the
equivalent sites of the cubic cell, and is here illustrated
in the case of spinel.

”ﬁe averages over the four equivalent sites are given
by:

cub(o 0) = 0p,,(0,0), (6)
(2,0)=0 (7)

cub

Similarly, we have :Q

cub(o 0) = Uggd(o 0) (8)
02,(4,0) = —— (70, (4,0)+2v70 02, (4,3)) (9)
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4. Calculation of the absorption cross-sections for the
experimental orientations

The electric dipole isotropic cross-section of the cubic
crystal, o2, (€), does not depend on the direction of the
incident polarization vector €. Hence, it will be the same
for every experimental configuration:

Uc[;b(arot) = Ucub(o 0). (10)

For the sample cut and the experimental setup used in
this study, the expression of the electric quadrupole cross-
section of the cubic crystal, is given in function of the
rotation angle a.o¢ by:

[—19 — 60 cos(2a0t)
(4,0). (11)

ogb(amt) = Ucub(O 0) + 16\/—
+15 cos(4aryor )]0

Ocub

The connection between Eqs. @ and H is made following
the definition of € and k as functions of «;.,; (Appendix
B). Eq. @ shows that the total angular dependence of
the cubic crystal is a m-periodic function. The fact that
the rotation axis might not be perfectly aligned with the
x-ray beam or that the sample might not be perfectly
homogeneous, could have introduced an additional 27
periodic component. This component would be removed
from the signal, using a filtering algorithm, basﬁ on the
angular dependence recorded from 0° to 360°.Ed In our
experiments, this 27 periodic-component was measured
to be very small, and no filtering was applied.

For the present sample cut and experimental setup,
the maximum variation of the electric quadrupole cross-
section is expected between ;.. = 0° and a,.o¢ = 90°.

e For a,..¢ = 0°:
Q o 4
O—cub(aTOt = 0 ) = O'O — \/ﬁ cub(4 0) (12)
e For a,.,; = 90°:

0% (ot = 90°) = 0 + (13)

7
— 4,0
2\/ﬂ cub( )

e The isotropic cross-section is :

1
O—zgo 15 (8 qub (arot - 90 ) + 7 Ucub(aTOt = OO))

(0,0). (14)

cub

e The dichroic term is :

U?ichro = Ugib(aTOt = 900) - O’gj,b(a"‘Ot = OO)
15 g
=——07,(4,0). 15
2 /14 cub( ) ( )



B. Computational details

1. Density Functional Theory Calculations

The computation of the electric dipole and electric
quadrupole absorption cross-sections were done using
a first-principles total energy code based on DFT in
the Loc ensity Approximation with spin-polarization
(LSDA).E1 We used periodic boundary conditions, pla@
wave basis set and norm consgrving pseudopotentials
in the Kleiman Bylander form.Ed The parameters for the
pseudopotential generation are given in Ref. E

We started from a host structure of MgAlsOy4, which
is obtained by an ab initio energy minimization calcula-
tion. In this calculation, the lattice parameter was fixed
to its experimental valuetd while the atomic positions
were allowed to vary to minimize the total energy and
the interatomic forces. We then relaxed a 2x2x2 rhom-
boedral supercell containing one Cr atom in substitution
for Al (i.e., 1 Cr, 31 Al, 16 Mg and 64 O), with the basis
vectors expressed in a cubic frame. The supercell was
large enough to avoid interactions between neighboring
Cr atoms. As the Cr impurity is in its high-spin state,
the spin multiplet SZ:% is imposed for the supercell. The
atomic positions in the supercell were allowed to vary, in
order to minimize the total energy and the interatomic
forces. We used a 90 Ry energy cutoff and a single k-
point sampling in the Brillouin zone. The Cr-site, after
relaxation, still exhibits a Dsg symmetry, with an inver-
sion center, one Cs axis and three Cp axis.

The Cr K-edge absorption cross-section was computed
using the method described in Refs. BB  First,
we calculated self-consistently the charge density of
the system, with a 1s core-hole on the substitutional
Cr atom. Then, the all-electron wave functions were
reconstructed within the projector augmented wave
framework.Ed The absorption cross-section was com-
puted as a continued ion, using a Lanczos basis
constructed recursivelytdtd We used a 70 Ry energy
cutoff for the plane-wave expansion, one k point for the
self-consistent spin-polarized charge density calculation,
and a Monkhorst-Pack grid of 3x3x3 k-points in the
Brillouin zone for the absorption cross-section calcu-
lation. For the convolution of the continued fraction,
we used an energy-dependent broadening parameter
v, which takes into account the main photoelectron
damping modes (core-hole lifetime and imaginary part
of the photoelectron self-energy). The energy-dependent
v used in this study is that of Ref. . The calculated
spectrum was then shifted in energy to the experimental
one: the maximum of absorption is set at 6008.5 eV. The
absorption edge jump is set to 1, so that experimental
and calculated spectra for all figures are normalized
absorption. In such a way, the calculated pre-edge
could be compared directly to the experimental one.
As mentioned previously, the four substitutional sites
will exhibit different spectra for the electric dipole
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FIG. 2: (Color online) Pre-edge spectra calculated for site

A, B, C and D in the electric quadrupole approximation.
The orange lines present the spectra calculated for aror = 0°

(¢ = [010], k = [100]), while the black lines are the spectra

calculated for a0 = 90° (€ = [%,%,%], k= [—%,—%,%]).

and quadrupole operators, since their orientations are
different with respect to the incident beam absorption of
x-rays with given (€ k). The general method to obtain
the angular dependence measured for the cubic crystal
is to compute the electric dipole and electric quadrupole
absorption cross-sections for a Cr impurity lying in each
of the four trigonally distorted sites A, B, C and D, and
then to take the average. However, this heavy brute force
method requires the calculation of four monoelectronic
potentials with core-hole (after previous associated
structural relaxation). The number of calculations
can be drastically reduced if we take advantage of the
symmetry properties of the crystal, which enables to
perform the calculations for only one substitutional site
(site A, with coordinates of (0, 1, 3) and direction of
distortion [111]). This method is detailed in Appendix C.

Figure E presents the normalized electric quadrupole
cross-section calculated for the four equivalent sites, for
Qrot = 0° and a0 = 90°. The spectra calculated for
arot = 0° (orange line) are equal for the four sites. For
arot = 90°, sites B and C give the same spectra (black
solid line), as well as sites A and D (black dashed line).
We observe a slight difference in intensity for the peak at
5993.2 eV: this is indeed a consequence of the fact that
sites (A, D) and (B, C) have different orientations with
respect to the incident beam, and that their symmetry
differs from Op. Because the trigonal distortion of the
octahedra is small in spinel, the anisotropic behaviour
of the sites is limited for the investigated configurations.
However, the effect of the trigonal environment can have
drastic consequences when the distortion is more pro-
nounced.



2. Ligand Field Multiplet Calculations

In order to extract quantitative information from
the angular dependence of the pre-edge, we have per-
formed LFM calculations using the method developed
by T. ’ﬁﬁe@n the framework established by Cowan and
Butler. In this approach, Cr3* is considered as
an isolated ion embedded in a crystal field potential.
The band structure of the solid is not taken into ac-
count, which prevents to calculate transitions to delocal-
ized (i.e., non-atomic) levels. In other words, the LFM
approach can be used to calculate K pre-edge spectra, but
the edge region cannot be computed. Since the Cr-site
is centrosymmetric, no hybridization is allowed between
the 3d-orbitals and the 4p-orbitals of Cr. Hence, the pre-
edge is described by the transitions from the initial state
1523d3 to the final state 1s'3d*.

We expose briefly the principles of multiplet calcula-
tions but details can be found in other references (see
for example Ref. Bd). This approach takes into account
all the 3d-3d and 1s-3d electronic Coulomb interactions,
as well as the spin-orbit coupling on every open shell of
the absorbing atom, and treats its geometrical environ-
ment through a crystal field potential. In the electric
quadrupole approximation, the spectrum is calculated as
the sum of all possible transitions for an electron jump-
ing from the 1s level toward one 3d level according to:

o9&, k) = 2 k? ozhwz—| (F|é-rkr|D)|>6(Ep—Er—hw),
ILF
(16)
where |I) and |F) are the multielectronic initial and
final states, of respective ene)@ies E;, Er, and d; the
degeneracy of the initial state.

Once the [I) and |F) states have been calculated, the
absolute intensities of the pre-edge spectra are calculated
in A% at T = 300 K. The population of the ground-state
levels |I) is given by a Boltzmann law. The spectra are
convoluted by a Lorentzian (with HWHM = 0.54 eV)
and a Gaussian (with FWHM = 0.85 V), which respec-
tively take into account the lifetime of the 1s core-hole
for Cr and the instrumental resolution. Finally, the tran-
sitions are normalized by the edge jump at the Cr K edge,
calculated for a Cr atom from Ref. as 4.48 10~* A2
Hence, the calculated spectra can be directly compared
to the normalized experimental ones.

The electric quadrupole absorption cross-section was
calculated for a Cr®* ion lying in D34 symmetry, accord-
ing to the method described above. The crystal-field pa-
rameters used in the calculation are those derived from
optical absorption spectrogopy =0.226 eV, D,
0.036 eV, D, =0.089 eV).Ed We used the scaling factor of
the Slater integrals (k= 0 7), related to B and C Racah
parameters, given in the same reference. The only ad-
justable parameter is the absolute position in energy.

As mentioned in Sec. II A 2 (Eq. f), one needs

first to determine O'g (0,0), O'gd (2 0), g (4,0) and

agw (4,3), in order to determine o, b(O 0) and acub(4, 0)
using Eqsﬁ and E This is done by performing four mul-
tiplet calculations, which provide four independent val-
ues of the electric quadrupole cross-section (Appendix
D). Once this first step has been performed we used
Eq. B and [ to derive ocub(() 0) and ocub(4 0). The
electric quadrupole cross-section of the cubic crystal can
then be calculated for any experimental configuration
using Eq. @ The electric quadrupole cross-section
for ayor = 0° and au.o; = 90°, the dichroic and the
isotropic spectra were determined respectively according
to Eqgs @-l@

IV. RESULTS
A. DFT calculations

1. Comparison with experiment

The XANES spectrum, calculated for the cubic
crystal by first-principles calculations (solid line), is
shown in Fig. E and compared to the experimental
spectrum (dotted line). As we mentioned above, the
main absorption edge is due to electric dipole transi-
tions. Hence, the XANES spectrum does not show any
angular dependence, except in the pre-edge region. The
agreement between the experimental and theoretical
spectra is good, since all the features are reproduced by
the calculation. A more detailed discussion is reported
in Ref. [ The inset of Fig. f| shows the theoretical
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FIG. 3: (Color online) Comparison between experimental
(dotted line) and calculated (solid line) isotropic XANES
spectra at the Cr K-edge in spinel. The calculation was per-
formed using DFT-LSDA (see Sec. III B1). The inset presents
the spectra in the pre-edge region. The dashed orange line is
the calculated electric dipole contribution.
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isotropic XANES spectrum in the pre-edge region (black
solid line). This spectrum is the sum of the isotropic
electric dipole (orange dashed line) and the electric
quadrupole contributions. Our calculations show that
electric dipole transitions do not contribute to the
pre-edge, except by a background, which is actually the
tail of the absorption edge (1s—p transitions). This is
a clear confirmation that Cr K pre-edge features are
due to a pure electric quadrupole contribution. In the
pre-edge region, the calculated isotropic spectrum is
in satisfactory agreement with experiment, since the
two features visible in the pre-edge are reproduced.
Similar calculations have been successfully performed
to calculate the K pre- for substitutional Cr3+
in corundum and beryl ¥4 with a good agreement
between the experimental and theoretical data. This
shows that a monoelectronic approach can reproduce
pre-edge features, as can be measured on powder spec-
tra. However, the position of the theoretical spectrum
is shifted by about 0.9 eV relative to experiment.
This shiﬁ QIQ@ has been already observed in several
systems FEPEIES i due the limitation of DFT-LSDA
in the modelling of electron-hole interaction. In the
calculation, the effect of the core-hole is to shift the 3d
levels to lower energy, with respect to the main edge.
Unfortunately, this effect is not sufficient to reproduce
the experimental d@ta, because the core-hole seems to
be partly screened.ld This could be improved bytaking
into account the self-energy of the photoelectron.

The experimental and calculated pre-edge spectra for
the two configurations, which give the maximum dichroic
signal for the sample cut, are shown in Fig. E The num-
ber of peaks is well reproduced in both cases by the cal-
culation. For both spectra, the intensity of the first peak
at about 5990.7 eV is close to 4 % of the absorption edge
on the experimental data, but underestimated by 25 %
in the calculation. The relative intensity of the peak
at about 5992.7 eV is overestimated in the 90° config-
uration. Additionally, the energy splitting between the
two peaks is underestimated by the calculation (1.6 eV vs
2.0 €V experimentally). The small energy shift of the first
peak between the two configurations, observed as posi-
tive in the experimental data, is calculated as negative.
As a consequence of those several discrepancies, the the-
oretical dichroic signal is not in good agreement with the
experimental one. Compared to the Ti K pre-edge cal-
culations in rutile and SrTiOg, using a similar rﬁﬁ@@@
tronic approach and reported in several studies,t '
the significant discrepancy observed for Cr in spinel may
seem at first sight unexpected. However, we underline
the fact that interlectronic repulsions become crucial for
localized final states (e.g., for 1s—3d transitions), and
that Ti has no d electrons in the systems studied. This
shows that the electronic interactions on the Cr atom are
too significant to reproduce quantitatively the angular
dependence of Cr-spinel in a monoelectronic approach,
although the average description (i.e., the isotropic spec-
trum) is satisfactory.

Nevertheless, the monoelectronic calculation is able to
reproduce the correct number of peaks. Since this mono-
electronic approach does not take into account spin-orbit
coupling and does not fully describe the 3d-3d electronic
repulsion, a monoelectronic chemical vision of an isolated
Cr3* ion can be applied for the interpretation of the cal-
culated features.

2. Assignment of the calculated monoelectronic transitions
within an atomic picture

In the following, we shall concentrate on the spectra
associated to the local symmetry (i.e., calculated for site
A). In the monoelectronic calculations, the spin multi-
plet SZ:% is imposed for the supercell, since the Cr im-
purity is in its high-spin state. Cr3* has an initial elec-
tronic configuration (t;g)3(eg)0, which means that Cr3+
is a fully magnetized paramagnetic ion in the calcula-
tion, while it is paramagnetic in the experiment. Indeed,
it is not possible to impose the fourfold degenerate S:%
ground-state in the DFT calculation, that requires non-
degenerate ground states. In order to assign the transi-
tions visible in the experimental spectra, we would need
to calculate the average of the spectra for Sz:%, S.=-
3,8.=1 and S;=-1.
the calculation for Sz:i% in the Kohn-Sham formal-
ism, since the@ are linear combinations of three Slater
determinants.E2 Nevertheless, the spin-polarized compu-

However, it is not possible to do
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FIG. 5: (Color online) Electric quadrupole transitions calcu-
lated for site A, using spin-polarization. The upper panel (a)
presents the spectrum calculated for (€ = [%,%,0], k= [%,—
%,0]). The middle panel (b) presents the spectrum cal-

culated for oo = 0° (€ = [010], k = [100]). The lower

panel (c) presents the spectrum calculated for arot = 90°
g=[24 L] k=[21-11L]). For each configuration, the
20273 2722 g

respective contributions of the two spins are plotted (black
solid line for spin down, orange solid line for spin up), as well
as the sum (dashed line). The Fermi level is located approxi-
mately around 5990 eV.

tation of the XANES spectrum for SZ:% enables to un-
derstand the origin of the pre-edge features: the contri-
bution of the two spins (T and |) can be indeed separated,
which means that we can deduce whether the 3d-orbitals
have been reached by a 1s electron with spin T or |, and
this for different expressions of the electric quadrupole

operator.

As shown in Fig. El, although the distortion of the oc-
tahedra has been slighlty exagerated, the oxygen ligands
are located approximately along the fourfold axis of the
cube for all the equivalent sites A, B, C and D. Thus, the
analysis made for site A provides an assignment, which is
also valid (mutatis mutandis) for the equivalent sites. For
a given configuration (&, R), we can easily deduce from
the expression of the electric quadrupole operator which
3d-orbital has been probed in this transition. The inter-
pretation of the features is possible through group the-
ory in the monoelectronic approach, using the branching
rules of Oy, D D3q (Appendix E). The d orbitals belong
to the to4(0p) and e4(0},) irreducible representations
within octahedral symmetry. When lowering the sym-
metry to Dsq, the to4(O}) irreducible representation is
split into the ey(D3q) and a14(D3q) irreducible represen-
tations. To indicate that they come from t94,(0p), they
will be written as ey (tog) and ai14(t24). The e4(Op,) irre-
ducible representation becomes the ey(Dsq) irreducible
representation, designed hereafter as eg4(eg).

The normalized electric quadrupole cross-sections cal-
culated for site A are shown in Fig. ﬂ for three different
configurations (&, k). For a better understanding of
the structures, the electric quadrupole transitions to
both occupied and empty states are represented. For

(é = [%,%,O], k = [%,—%,O]) (Fig. Ea), the electric

quadrupole operator is expressed as O, = (22 —y?),
which enables to probe the 3d electronic density in the
22-y? direction, i.e., along Cr-O bonds: the orbitals
probed are the e4(ey), which are empty for spin 1 and
|, since they are coming from the ey(Op) levels. Fig. Ha
shows that, indeed, two peaks are obtained at 5991.6 eV
and 5993.2 eV, above the Fermi level. Below the Fermi
level at 5990 eV, a broad structure is observed between
5982 eV and 5990 eV, which corresponds to e4 states
hybridized with the p-orbitals of the oxygens.

For ay.o¢ = 0° (¢ = [010], k=[100]), one single peak is
obtained in the empty states at 5991.6 eV for spin | (see
Fig. flb, black line). For this orientation, the electric
quadrupole operator, expressed as Ob = xy, enables to
probe the d electronic density, projected on Cr, in the
zy direction, i.e., between the Cr-O bonds. The eg4(t24)
and a14(t2g) orbitals having a component along zy, as
indicated by their expressions in Appendix D (Eq. @),
they are probed in the transition. As these states coming
from the t; g(Oh) are fully occupied, they can be reached
only by a photoelectron with spin |. This is indeed
consistent with our results. The splitting between eé

and a% , 1s not visible, which is an indication of a small
trigonal distortion for the Cr-site in spinel. Below the



Fermi level, a broad structure with an intense peak at
5988.7 eV is observed. The intense peak corresponds to
the occupied e/ (t24) levels. To interpret the origin of
the broad structure, we have to remind that the eg(ta4)
states can hybridize with the e4(ey) levels, since they
belong to the same irreducible representation in Dsg4.
As mentioned previously, the hybridization of the mixed
eg states with the p-orbitals of the oxygens gives rise to
the structures visible below 5988 eV.

For apor = 90° (€ = [%,é,f] k=[1, ;,f (Fig. fc),
two peaks are obtained above the Fermi level. For this
orientation, the electric quadrupole operator is expressed
as O.= M — %, which enables to probe the 3d elec-
tronic den81ty both in the zy and 322 —r? directions.
For the 322 —r2 component, the levels probed are the
eq(eq), as for the first orientation studied (Fig. Fa). For
the zy component, the levels probed are the e, (t24) and
a14(t2g), as for the second orientation (Fig. Hb). Fig. Be
shows that the spectrum is a close combination of the
transitions visible on the two previous spectra (Fig. Ea
and b), and the assignment of the structures is made
clear from the two previous cases. The position of the
t%g(eg) peak is close to that of the ef(ey) at 5991.6 eV.

The energy difference (1.6 eV) between t%g(eg) and

ei(egy) gives an idea of the t%g(Oh)—eé(Oh) splitting
due to the crystal field. This can be compared to the
experimental crystal-field splitting (2.26 eV), derived
from optical absorption spectroscopy, but one should
keep in mind that the crystal field splitting in the
monoelectronic picture is associated with spin T levels.

For the configuration O, the 3z%2—r? component enables
to probe the e,(Oy) states, as 22 —y*. Considering the
normalization factors in the expression of the d orbitals,
the magnitude of the transition operator along 322 —r?
is /3 times bigger than the magnitude of the transition
operator along x* —y?, which is 2 times bigger than the
magnitude of the transition operator along zy. O, thus
appears as a linear combination of the two operators

0, and Ob, with respective weights of ‘[ and 1. If no

coupling occurs between O, and Ob When calculating
the square matrix elements |(f|é - rk - r|d)[?, the third
cross-section (c¢) should be the linear combination of
the two cross-sections (a) and (b) obtained for O, and
Ob, with respective weights of % and i. However,
the linear combination of the two cross-sections (not
shown in Fig. E) and the cross-section obtained for
the linear combination of the transition operators are
slightly different, which indicates a small interference
between the zy and 322 — 7?2 (or 22 — y?) compo-
nents. The interference is a clear evidence of the e}(eg)

and e (tgg) hybridization due to the D34 local symmetry.

B. LFM calculations
1. Comparison with experiment

For the two experimental configurations, Fig. E
presents the experimental Cr K pre-edge spectra (dot-
ted line), the theoretical spectra obtained by LFM cal-
culations (solid line) and the corresponding dichroic sig-
nals. The calculated pre-edges have been obtained for
the cubic crystal from a calculation performed for a sin-
gle site with D34 symmetry. For each configuration, the
shape of the spectrum is well reproduced by the calcula-
tion. In the experimental data, the position of the first
peak is shifted by approximately +0.15 eV for o, = 0°,
compared to that in the «,,; = 90° configuration. This
relative shift is also well reproduced in the calculated
spectra. For a,.,; = 90°, the relative intensity of the two
peaks is in good agreement with the experimental data.
The shape of the dichroic signal is well reproduced by
the calculation: in fact, the x-ray linear dichroism of the
crystal is well described in the multiplet approach, sug-
gesting that the calculation includes the necessary mul-
tielectronic interactions on the Cr atom. We recall that
the crystal-field parameters used in the calculation are
those obtained from optical absorption spectroscopy (see
Appendix F & G for the correspondance between the ex-
perimental crystal-field parameters and the parameters
used in the multiplet calculations). However, the inten-
sity of the dichroic signal is overestimated by 20 % in
the calculation. The first reason for this overestimation
is that the calculated spectra have been normalized by
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the edge jump at the Cr K edge, which was calculated
for an isolated Cr without considering the influence of
the crystal structure according to Ref. i1l This can ac-
count for a few percent in the discrepancy. Another few
percent possibly lie in the normalization of the experi-
mental data, since we used the average of two spectra,
which were recorded between 5950 eV and 6350 eV with
a rather large energy step (0.5 eV). This can introduce
limited noise and thus uncertainty on the normalization.
A third source of error is that the crystal-field parame-
ters used in the calculation might be slightly different in
the excited state than in the ground-state, because of the
influence of the core-hole: for example, if D is increased
by 2 % in the excited state, the intensity of the first peak
in the dichroic signal decreases by 14 %. The shape and
intensity of the calculated dichroism are quite sensitive
to the crystal-field parameters used in the excited state.

Nevertheless, despite this slight intensity mismatch
with the experimental data, the angular dependence of
the crystal is well reproduced by the calculation, which
means that the multielectronic approach takes into ac-
count the necessary interactions. Since isotropic and
dichroic calculated spectra fit well with experiment, the
analysis of the calculation is very likely to yield valuable
insight into the origin of the experimental transitions in
the pre-edge region. In the following, we shall investigate
the influence of the different terms in the Hamiltonian
taken into account in the LFM approach (trigonal dis-
tortion, fourfold degeneracy of the ground state trigonal
S:% (4A29), spin-orbit coupling on the 3d levels, 3d-3d
or 1s-3d Coulomb repulsion) on the angular dependence.

2. Influence of trigonal distortion on dichroism

In this paragraph, we investigate the influence of
the trigonal distortion on the angular dependence. The
isotropic and dichroic spectra in O symmetry have been
obtained by setting the trigonal distortion of the crys-
tal field to zero. They are compared to those calculated
in D3g symmetry using the distortion parameters given
by optical absorption spectroscopy (D, = - 0.036 eV,
D, = 0.089 eV). As shown in Fig. ﬂ, the difference be-
tween the calculations performed in Op and Dsq sym-
metries (orange solid line and black dotted line, respec-
tively) is weak, since the isotropic and dichroic signals
have similar shape and intensity. This result is consis-
tent with the small values of the parameters D, and D,
which quantify the trigonal distortion of the Cr-site in
spinel. This means that, provided that trigonal distor-
tion is limited, the calculation of pre-edge spectra could
have been performed for a single site with Oj symmetry
(see Appendix A2 for simplified formula). This is also in
line with the monoelectronic calculation, for which the
splitting between e} (tay) and aig(tgg) could not be re-
solved in the calculated spectra.

We have investigated the effect of the intensity of the
trigonal distortion on the calculated spectra by choosing
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FIG. 7: (Color online) Comparison between calculated Cr

K pre-edge spectra in spinel in Dsq symmetry for increasing
trigonal distortion. The orange solid line, labeled O;, corre-
sponds to a perfect Op symmetry (D, = 0, D = 0). The
black dotted line,labeled Dsq corresponds to (D, = -0.036
eV, D, = 0.089 eV), which are the distortiop—parameters
obtained from Optical Absorption Spectroscopy.td The black
solid line, labeled D34-2, was obtained for a doubled distor-
tion parameters (D, = -0.072 eV, D, = 0.178 eV), and the
orange dotted line, labeled Ds4-3 for tripled distortion pa-
rameters (D, = -0.108 eV, D, = 0.267 eV)

two other sets of the distortion parameters. In Fig. ﬁ,
the spectra labeled Dsg4-i (i = 2,3) are calculated with
the set of distortion parameters (i x Dy, ¢ x D,), for
(Dy =-0.036 eV, D, = 0.089 V). The crystal-field pa-
rameters used are the same in the ground- and excited-
state. As seen in Fig. ﬂ, the intensity of the isotropic
spectra (Dsq, D3g-2 and D3q-3) are almost identical, in-
dicating that the isotropic signal is not sensitive to site
distortion. The intensity of the maximum at 5990.75 eV
remains close to 2.5 % of the electric dipole edge jump.
On the contrary, the shape and intensity of the linear
dichroic signal is highly sensitive to the trigonal distor-
tion. The intensity of the first feature at 5990.25 eV is
lowered when the distortion is increased: one observes a
20 % decrease when the distortion parameters are dou-
bled (signal labeled Ds4-2 in Fig[]), and a 50 % decrease
when the distortion parameters are tripled (signal labeled
Ds4-3). Tt should be noticed that, for our parameter sets,
the increase of site distortion is accompanied by a rather
counter-intuitive decrease of the intensity of the linear
dichroic signal, thus indicating the relevance of the the-
oretical developments performed within this paper. This
means that site distortion has to be carefully taken into
account when calculations are performed to mimic the
angular dependence of the pre-edge. In that case, the
calculation for a single site with D3y symmetry should
follow the method described in Sec. III.



3. Influence of ground-state degeneracy, spin-orbit coupling
and interelectronic repulsion on dichroism

Beyond the site symmetry distortion, the other ingre-
dients of the calculation are the fourfold degeneracy of
the S:% ground state, the 3d-3d Coulomb repulsion, the
1s-3d Coulomb repulsion and the 3d spin-orbit coupling.
We shall check the influence of these different parame-
ters. We have performed multiplet calculations restrict-
ing the ground-state to the non-degenerate SZ:% state of
the S:% multiplet. The calculated electric quadrupole
transitions are almost identical to those with the four-
fold ground state. Differences are below 0.1% of the
maximum intensity of the isotropic electric quadrupole
spectrum. This clearly indicates that the procedure fol-
lowed in monolectronic calculations to take into account
the spin degeneracy is sound and appropriate. The ra-
dial integrals for Coulomb interaction and spin-orbit cou-
pling are calculated by relativistic Hartree-Fock atomic
calculations. One finds: the 1s-3d exchange Slater in-
tegral Gi, 5, = 0.052 eV, the direct 3d-3d Slater inte-

grals F32d’3d = 10.78 eV and F??d,sd = 6.75 eV, and the
3d spin-orbit coupling (34 = 0.035 eV. G, 5, is small

compared to ng 3q and ng 3q- Using Gi, 34 = 0 in the
multiplet calculatlon we found almost no difference with
the isotropic and dlChI‘OlC signal calculated with the ab
initio atomic value of G 34~ By calculating the dichroic
signal with (34 = 0, we found a small difference concern-
ing the intensity of isotropic and dichroic signals, when
compared to the associated spectra with (34 = 0.035 eV.
The maximum relative difference is less than a few per-
cent (2 %) of the feature intensity. The observed small
dependence of the pre-edge features with G%S,Bd and §ﬁ

is in line with results obtained at the Fe K pre-edge.
We also performed calculations setting Fy, 55 and Fiy 5,
to zero, and we observed that the isotropic and dichroic
calculated spectra (not shown) were in complete disagree-
ment with experimental data. This clearly indicates that
the direct Slater integrals on the 3d shell, and thus the
multielectronic 3d-3d Coulomb interactions, are the es-
sential ingredients governing the shape of the isotropic as
well as the dichroic signals.

From the preceding analysis, we can unambiguously
determine the parameters governing the shape and
intensities of the pre-edge features. Spin-orbit coupling
on the 3d orbitals, ground-state degeneracy and 1s-3d
Coulomb repulsions have only limited impact on the
calculated LFM isotropic spectra. This explains the
reasonable agreement between calculation and exper-
iment for isotropic pre-edge in the DFT formulation,
where the two first previous ingredients are missing,
and where the 1s-3d Coulomb repulsion is taken into
account in an approximate way. The Dsq distortion has
almost no influence on the isotropic pre-edge but can
have a large one on the dichroic signal. In the case of
Cr in spinel, the trigonal distortion is such small that
it does not provide detectable features on the dichroic
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signal. The major ingredient for the interpretation of
the Cr pre-edge features is 3d-3d Coulomb repulsion.
This effect is highly multielectronic and complicates the
simple interpretation provided by the monoelectronic
scheme. This ingredient is mandatory to get correct
intensities and energies for both isotropic and dichroic
signals.

V. DISCUSSION AND CONCLUSION

On the one hand, monoelectronic calculations allow
to make contact between electric dipole and electric
quadrupole calculations. They show that electric dipole
transitions do not contribute to the features visible in the
pre-edge and they provide a clear vision of the assign-
ment of the 1s-3d transitions occuring in the pre-edge.
However, they are unable to reproduce quantitatively the
linear dichroism in cubic crystals, since the interelec-
tronic repulsion on the 3d levels of the Cr ion cannot
fully be described in the LSDA framework. On the other
hand, multielectronic calculations well reproduce the an-
gular dependence of the pre-edge in cubic crystals, as well
as the isotropic spectrum, with no adjusted parameters.
However, in this approach, the main absorption edge,
associated to electric dipole transitions, cannot be repro-
duced since the band structure (or at least the electronic
structure of a large enough cluster around the absorbing
atom) is not taken into account. The agreement between
experiment and multiplet calculations indicates that the
assignment of the transitions is no more straightforward,
as could have been expected from a more simple atomic
monoelectronic picture. Hence, the two approaches are
highly complementary.

From this monoelectronic-multielectronic combined
approach, our first finding is that the 3d-3d electronic
repulsions and the crystal field are the main interactions
prevailing at the K pre-edge of Cr in spinel. The mul-
tiplet approach seems mandatory to describe quantita-
tively the K pre-edge of 3d transition ions, and more
generally the K-edge spectra of elements for which elec-
tronic correlations are significant. The effect of the 3d
spin-orbit coupling and of the 1s-3d Coulomb repulsion
are very weak: this explains that the monoelectronic ap-
proach (which does not fully take into account these in-
teractions) can provide a satisfactory simulation of the
isotropic spectrum.

Our second finding concerns the maximum proportion
of electric quadrupole transitions in the Cr K pre-edge
that can be estimated, with respect to the edge jump
(here, normalized to 1): the intensity of the largest peak
(5990.75 eV) on the pre-edge isotropic spectrum is less
than 2.5 % of the edge jump. From the monoelectronic
calculations, we estimate that the non-structured slope
from electric dipole origin contributes to about 0.9 % of
the edge jump at 5990.75 eV. Thus, the total intensity
of the largest pre-edge feature does not exceed 3.5 %.



We can conclude that, if the pre-edge features are more
intense than 4 % of the edge jump, pure quadrupole
transitions alone cannot explain the origin of the struc-
tures. It gives a strong limitation to the often encoun-
tered idea that electric quadrupole transitions could ex-
plain large pre-edge features. This result, which is consis-
tent with pﬁﬁ@ studies on Fe?T and Fe?* in minerals
and glasses,E1£2'E can probably be extended to the other
3d transition ions.

Our final finding concerns the relation between the
spectral feature of the pre-edge with the local site
distortion of the absorbing ion. The effect of the trigonal
distortion does not affect significantly the pre-edge
isotropic spectrum. This is a general trend already
observed for other related spectra (electric dipole tran-
sitions for K-edge and Lg 3 edges of 3d elements). On
the contrary, the dichroic signal is much more sensitive.
This indicates the possibility to obtain quantitative
information on site distortion from the linear dichroic
dependence of the pre-edge feature. This can only be
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recorded if angular dependent measurements on single
crystals are performed to yield the full dependence
of the absorption signal. = The connection between
site distortion and linear dichroism is then made by
simulations in the LFM method within the geometrical
analysis developed throughout this paper.
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VI. APPENDIX
A. Proof of Equation 3

1. General expression of the electric quadrupole
cross-section for a cubic crystal

We start from the defining formula of the electric
quadrupole cross-section for linearly polarized x-rays:

o9&, k) = mkahw > [(f|(é-rk - r|g)[*6(E, + hw — Ey),

f
= g ei€ikikmoitim,

ijlm

where :
Tijim = w2 k*ahw 3 ((glriri| ){f|rjrmlg)d (Ei+hw—Ey),

¢ and k are the polarization and wave unit vectors,
respectively.

To calculate the form of this sum when the sample has
a symmetry group GG, we use the fact that the absorp-
tion cross-section is invariant by any symmetry opera-
tion that acts on both the sample variables o;j,, and
the x-ray variables & k. Therefore, the cross-section
is left invariant by the crystal symmetries applied to
the x-ray variables. In other words, for any operation
S of the symmetry group G of the sample, we have
o(é€,k) = 0(S(é),S(k)). Therefore, if G is the symmetry
group of the sample, or a subgroup of it, we can write

oQe, k) = éZa(S(é),S(f()), (18)
S

where |G| denotes the number of elements of G.
We rewrite Eq. [[7] as

oPEk) =3, ki + Y ciekikjoi;
+ iy €icikikioiji + 32 etk oiii + R.
(19)

Eq. E defines term R. The term R is the sum of the
terms that are not (i = j and I = m) or (I = ¢ and
m = j)or (m =+4and ! = j). So R is a sum of 4
terms of the type (i # j and ¢ # [ and ¢ # m) plus
the three cyclic permutations of (i,j,l,m) and 4 terms
of the type (i # j and j # [ and [ # i) plus the three
cyclic permutations of (i, j,1,m). We want to prove Eq. E
that is valid for a cubic crystal in a reference frame such
that z, y, z axis are taken along the fourfold symmetry
of the cubic crystal. We first show that if the sample has
three perpendicular mirror planes, the term R is zero.
Consider the term (i # j and i # [ and i # m) and take
the symmetry (S(e;) = —e;) the other variables j, k, [ are
different from ¢, so the symmetry leaves them invariant
and changes only one sign. Therefore, using Eq. B, this



term disappears from R. The same is true for the three
cyclic permutations. Consider now the term (¢ # j and
j # land [ # ). Since the values of the indices is 1, 2 or
3, one of the three indices ¢, j, k is different from the other
two and from m. So one index is again different from the
other ones and the same reasoning can be applied to show
that the corresponding term vanishes. This holds also for
the three cyclic permutations and we have shown that,
when there are three perpendicular symmetry planes, the
absorption cross-section is
0?(&,k) = Yoy etk iy + Yoy cicikikiou;

+ iz cicikikioiji + 30, 7 ki 0w (20)

The group Oy has a subgroup made by the six permu-
tations of (z,y,z). An average over this subgroup gives
the following result

Cub( k) = Z#j efkI A+ E#j eicjkik; B
+3, 7k, (21)

where

i#j
_ Tiijj & Oijji
B = Z 3 ’
ij

o=y A

i

To complete the proof, we use the fact that

> elky = é-ék-k-> ek,
i£] i

Z Eit’:“jkikj =

i#j i

andtheidentitiesé~é:1,R~R:1andé~f<:0toget

0% (k) A+Zs2k20 A-B). (22)

To compare this result with the expansion over spher-
ical tensors we need to determine the 1sotroplc contri-
bution O'O , which is obtained as the average of Jwb(e, k)
over angles. We write o(é, k) in terms of 0, ¢, ¥ as in
Sec. III A 2.

Thus,

0@, (&, k) = A+ €748 4in? 9(7 cos O cos? ¢

+ cos4¢ cos? § cos? ) + 2 sin? 2¢ sin? 1) — cos @ sin 4¢ sin 21/)) ,

and the average over all directions is

~

0,62 = 8% foﬂ' sin 9d9f d(bf dwo-cub k)
= A+ &=4=5,
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Therefore,

0%, (&, k)

)(C—A—B)

Z e2k2 —

and

1
+ (e2k2 + sikj +e2k2 — —)O’?, (23)

o9, (é,k) = 082 :

cub
where 0@ = (C — B) and ky, ky,, k. are the
coordinates of k.

This expression is valid for any cubic crystal, providing
that the reference frame is such that the z, y, z axis
are taken along the fourfold symmetry axis of the cubic
crystal.

2. Absorption cross-sections in Oy, symmetry

For a site with O symmetry, the orthonormal refer-
ence frame chosen is that of the cubic crystal. The z-axis
of the reference frame is parallel to the fourfold axis of
the cube. The angle 6 is thus the angle between the po-
larization vector and the z-axis of the cube.

The cross-section calculated for a single site in Oy,
is equal to the cross-section of the cubic crystal, since
a perfect octahedron and the cube have the same
symmetry operations:

O’Oh( k) = cub( €,k) and O'gh (€) = Jﬁb(é).

For a single site with O;, symmetry, the expression of
the electric dipole cross-section is very simple:

06, (€) = a(0,0), (24)

where o?(0,0) is the isotropic electric dipole cross-

section.

For the cubic crystal, one obtains:

Teun(€) = 05, (€) = a7(0,0). (25)

The electric quadrupole absorption cross-section for a

site with Oy, symmetry is given by:

1
= Ugh (0,0) + \/ﬁ (35 sin? 0 cos? 6 cos®

+5 sin? 6 sin®1p — 4
+ 5 sin?0(cos® 0 cos? ¢ cosd ¢ —sin?y cosdep)
—2 cosf siny cost sinde ] agh (4,0), (26)

ag?h (é,k)

where 0% (0,0) is the isotropic electric quadrupole

cub
cross-section, and acub(4, 0) a purely anisotropic electric
quadrupole term.



Using 03 (€.k) = 02, (ék)and (0 =%, 6 =Z, ¢ =
%), Eq. 4 is equivalent to Eq. R4 with:
of =08,(0,0) = 05,(0,0), (27)
20 20
Q _ Q -
o = —= 05 (4,0) = — 4,0 28
1 \/ﬂ Oh( ) \/ﬁ cub( ) ( )
Eq. @ can be rewritten as:
cub(e k) cub(o 0)
20 2]{52 2]{32 2k2 1 4.0
+ﬁ(€x z+€y y+€z 275) cub( )
(29)

This is the proof of Eq. E

B. Expression of é(ar.:) and k (arot)

For the sample cut and the experimental setup used in
this study, we have:

1—cos ot
1+co%a
~ t
E(arot) = 2 e 5

sin oot
V2
—1—cos arot
~ 1+ 2
—14cos arot
k(arot) = . e
sin oot

V2

C. Symmetry adapted method used in
monoelectronic calculations

Firstly, the absorption cross-section was calculated in
the electric dipole approximation, in order to derive

Cub(O 0), the isotropic electric dipole cross-section. This
term can be obtained from a single calculation of the elec-
tric dipole absorption cross-section performed for site A.
The expression of the electric dipole cross-section in Dsg,
o) is given by Eq. E, where 6 is the angle between the
polarization vector and the C3 axis. The program we
used for the ab initio calculations calculates the average
of ok (&) for € along the z-, y- and z-axis of the cubic
frame. The angle 6 between the [111] direction (parallel
to the C5 axis of the site) and each of these three direc-
tions, is arccos —3 This implies that, for a polarization

vector € taken along the z-, y- or z-axis,

0D,,(0,0) = 02,(0,0).  (30)

This means that the average value calculated by the pro-
gram is directly equal to o2, (0,0). Hence, o2, (0,0) was
obtained from a single calculation performed at site A.

Ten(€) = 05 (€) =
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Secondly, the calculation was performed in the electric
quadrupole approximation, in order to derive qub(() 0)

and Ucub(4 0). Once these two terms are determined,
we will be able to calculate the electric quadrupole ab-
sorption cross-section for the cubic crystal, according to
Eq. f, for any (¢,k) conﬁguratlon We used a symmetry
adapted method to determine owb(() 0) and owb(4, 0) in
order to reduce the number of calculations: this way, it
is possible to consider one single substitutional site (site
A) and take advantage of the symmetry properties of the
crystal. This method allows to save significant computa-
tional time, since we perform only two self-consistent cal-
culations (instead of eight with the brute force method):
one calculation to do the structural relaxation of the sys-
tem (substituted at site A), and a second one to calculate
the charge density with a core-hole on Cr. As mentioned
in Ref. @, assuming that we have calculated the spec-
trum for a given site X, it is possible to obtain the spec-
trum for any site Y equivalent to X by calculating the
spectrum of site X for a rotated x-ray beam. More pre-
cisely, in the case of electric quadrupole transitions, if site
Y is the image of site X by a rotation R, the spectrum of
site Y for a configuration (€,k) is equal to the spectrum
of site X for the rotated configuration (R=1(¢),R~1(k)).
As in Ref. P4, let us consider the site with reduced co-
ordinates (0, 1/4, 3/4), with is a representative of site
A. By applying the three rotations about the z-axis of
the crystal through angles of 7/2, 7, 37/2, we obtain
the positions of three sites, which are respectively rep-
resentative of sites B, D and C. The three rotations will
denoted as Ry/2, Rx and Rz 2. This implies that

o3 (&.k) = oF(R_},(8), R },(K)), (31)
ol(e,k) = o3(R; /< 3w/2<f<> (32)
o3(&,k) = oQ(R;1(&), Ry (k). (33)

We shall now apply the previous equations to the case
of the two experimental configurations, a,,; = 0° and
aror = 90°, in order to see if additional simplifications can
be found. To do so, we need to consider the expression
of the electric quadrupole transition operator Q:

Q:%é-rk-r. (34)

Note that, in text, the assignment of the calculated mo-
noelectromc transitions is discussed using 0= € rk - ‘T
We have to consider the absolute value of O (or Q)
because the cross-section does not depend on the sign of

0.

For aor = 0° (& = [010], k = [100]):

x| = [R;1(&) - rRM () x|
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TABLE II: Expression of the electric quadrupole cross section calculated in D34 group for the four independent orientations
used to derive O'g (0,0), 0% ,.(2:0), O'g (4,0) and O'D (4,3) (see text). The coordinates of & and k are given in the reference
frame chosen for ng, with the 2-direction parallel to the C'3 axis.

label 0 ¢ é k op. (8,k)
si arccos(d)  —ZE I (L L Ly (LLL 03,,00)+5203 (4,0)+ E0 (4,3)
s2  arccos(Js+J=) 0 0 (FER20,152) (HM20,12) 68 (0,0)-/Fo R, (2,0)- 3531033d(4 0)-2508 (4.3)
s z z I (0,1,0) (-1,0,0 o, (0,0)+/203 (2,0)+ fang(47 )
54 %Tﬂ % T (07%7'%) (07%7%) Ung(O,O)-V 1540—33(1(2 O) 4\/_UD3d(4’ )
Hence, we have D. Method used to perform the multiplet
PV 0 ) e calculations
o4 k) =oi(R_),(€), R, (k)
— of(R;l(é),Rgl k) As mentioned in Sec. III A 2 (Eq. f]), one needs
QR (2). R () first to determine ag (0,0), Ugm (2,0), ag d(4 0) and
=0 €),
A0 0 37/2 og ., (4,3), in order to determine o, b(O 0) and Ucub(4 0)
This means that: using Eqs E and E This is done by perforrnlng four multi-
plet calculations, which provide four independent values
R R R of the electric quadrupole cross-section, s1, s2, s3 and s/,
o9& k) =0l k) =0 (s k) = 02(¢,k). (35)  where & and k are defined in Table [I. The components
o% (0,0), 6% (2,0), 02 (4,0) and 02 (4,3) are ob-
3d 3d 3d, 3d

For a,.o¢ = 0°, we thus need to perform one single calcu-
lation of the electric quadrupole cross-section, since

02, (&%) =0 (& k). (36)
For ay.or = 90° (é = [%a%a%] and f{ = [_%7_%’%]>:
-tk r| = |R;1(E) rRIY(K) x| = 22/2 — (z — y)?/4]
and

R },(8) xR} (k) x| =
— [22/2— (x +y)/4.

This means that:

|R3;r1/2( €)- er/2( )|

o3 (€.k) = 0P (€. k), (37)
o9&, k) = o8 (¢ k). (38)

For a..o; = 90°, we thus need to perform two calculations
of the electric quadrupole cross-sections since

Q o{(&,k) + 02(é,k)
2

Ocub

k) =

(39)

As mentioned previously, instead of doing the calcula-
tion for the two sites A and C, it is more convenient to
compute the spectrum for site A, for the two orientations
(k) and (RZ ﬁ,, (&), R_i,r (k)). This corresponds to (€

= [5.3.95) K = Fheb g and (6 = 14355, K =
- %%]) respectively.

tained by a combination of sI, s2, s and s/, according
to:

1 2 4 2
9 —51+—52+—53+

O'ng(0,0) 5 47
Q _
0p,,(2,0) =— \/_ \/ 52+\/ 58— \/
214 4+/14 214 16+/14
Q _ _Zv-= V.-
UDsd(4’0) = 3% sl 35 82+ 105 83+ 105
2 1 2 V5
Q
Do (4:3) = \/_ 25 3v5 6
(40)

These equations have been obtained by inversing the sys-
tem of equations, which give the expressions of s1, s2, s3
and 54, in function of agw (0,0), aggd(Q,O), aggd (4,0)
and O’D (4,3) (Table [i).

Once th1s first step has been performed Eq. E and E
are used to derive Jwb(() 0) and ocub(4, 0). The electric
quadrupole cross-section of the cubic crystal can then

be calculated for any experimental configuration using
Eq. @

E. Expression of the d-eigenstates in D3y

The d-eigenstates in D3y point group are determined
by the branching rules of the irreducible representation
27(03) in D34. In order to get the complete eigenstates,
we must consider the Oz D O D D3q D Cs; subduc-
tion. To simplify the notation, we will make no use of

54



TABLE III: Branching rules for k = 2 using the SO3 D O D
D3 D C3 subduction

S5O03 — O — D3 — (3 | (SOg)p O)O’(Dg)A(Cg))
2 - 1 - 1 - 1 le+(t2))
2 - 1 - 1 — -1 le—(t2))
2 - 1 - 0 — 0 |a1(t2))
2 - 2 - 1 —= 1 le+(e))
2 - 2 - 1 - -1 le—(e))

the parity (£ or g/u) in the rest of the appendix. Hence,
we will use the subduction SO3 D O D D3 D (5. In
the following, the irreducible representations are labeled
according to Ref. @ For example, in O group, the irre-
ducible representation 1 designates T, in Schonflies no-
tation, while 2 designates E. The complete eigenstates
are written as |k(SO3)p(O)o(D3)A(Cs))3, where A is the
irreducible representation of C3 subgroup, coming from
the k irreducible representation of SOs, that becomes p
in O, o in D3 and X in C3. The branching rules for k= 2
are given in Tab. [[TI}

We recall that in Ds (or C3), the reference frame
chosen is not the one used in O. Therefore, we
need to express the |k(SO3)p(O)a(D3)A(Cs))s
in function of |k(SO3)p(O)o(D4)N(Cy))s, where
|k(SO3)p(0)o(D4)AN(Cs))s are determined using the
S03 D O D D4 D C4 subduction. To do so, we use the
relations given for k& = 2 in Ref. P (p. 549):

2211), = ———[2200), + i— 2222
| >3__ﬁ| >4+zﬁ| )4
221-1) =—i|2200> —¢i|2222>
| 3 \/5 4 \/5 4
|2100) :(1+z’)i|2111>
3 \/6 4
+(1—¢)%|211—1>4—%|2i§2)4
|2111), = (1 +1) (Q\f 2[ )|2111),
+ (=141 )(2\[ \1f)|211 1), f%piézh
|21171>3:7(1+i)(ﬁ+ﬁ)|2111> |
+(1f¢)($ 2\[)|211 1), — %piizh
(41)

If we now express the |k(SO3)p(O)o(D4)A(Cy))s as
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|JM) partners (Ref. R p. 527), we obtain:

[2200), = —|20>
1
2222), = 22 2—2
2222), \fl ) — ﬁl )
|2111), = —|21)
|211-1), = |2—1>
1
2122 22 2—2
2122), = fl ) — ﬁl )
(42)
In O, the d orbitals are expressed as:
i
iy = E(I2—2> —22))
i
dy> = E(I%D +[21))
1
dex = 5(12-1) ~[21)
d3.2_2 = |20)
1
dy2_y2 = —(]22) + |22
y ﬂ(l ) +12-2))
(43)

Combining Eqs @, @ and @, we obtain the expres-
sion of the d-functions, which are basis of the irreducible
representations in Cs, in function of the d-orbitals in O:

et(e) = |2211), = %dazz_rz - %dzz_yz
(

e_(e) = [221-1), = %d3227T2 + %dzz,y
ay(tz) = [2100); = —=day + 5dez — 5dy-
ey(tz) = |2111), = \}dw +(~5v5 + 5)da-

(44)

In D3, (et (t2), e—(t2)) is basis of the irreducible rep-
resentation e(tz). Similarly, (e (e) , e4(e)) is a basis of
the irreducible representation e(e). In Ds, a mixing is
thus possible between the functions belonging to the two
e irreducible representations, originating from the e and
to levels in O.

F. Definition of the crystal-field parameters used
in the LFM calculations

In SO3 symmetry, the crystal-field Hamiltonian can
be written as a combination of the ¢ components of unit
tensors U*) with rank k. Each tensor U® is associated
to the k irreducible representation of SO3. For the Cr3+



TABLE IV: Branching rules giving 0 as irreducible represen-
tation in D3

SO; — O — D3 — Cs X k(503)p(0)o(D3)A(C3)
1 = 0 S 0 = 0 2000
4 - 1 - 0 — 0 X 4100
2 - 1 - 0 — 0 X210

ion, £k = 0, 2 or 4, the term k£ = 0 contributing only to
the average energy of the configuration. Again, we will
not make use of the parity (+ or g/u). To study the
Cr?* ion in trigonal symmetry D3, we need to consider
the subduction SO3 D O D D3 D C}.

The crystal-field Hamiltonian is expressed as:

H,.. = Z X k(S03)p(0)a(D3)A(Cs) [7k(SO3)p(0)o(D3)A(Cs)

k=2,4

The unit tensor U*(S03)p(0)a(D3)A(Cs) g related to the A
irreducible representation of C3 subgroup, coming from
the k irreducible representation of SO3, that becomes p in
0, 0 in D3 and \ in C5. The terms X *(503)p(0)a(D3)A(Cs)
are the crystal-field parameters used in the LFM code.
Their definition, in function of (D,, D,, D,) or (v, v,
D,’), are given in Appendix G.

The branching rules which give 0 as irreducible represen-
tation in Ds are summarized in Tab. m This implies
that :

H,. — X4000774000 4 4100774100 4 52100772100 (45)
Using the expression of the d-eigenstates in C'3 given in

Appendix E and the Wigner-Eckhart theorem (Eq. 4.2.4
of Ref. Bd), we can now calculate the matrix elements

(k1(S03)p1(0)o1(D3) M (C3)|Heelk2(SO3) p2(0)o2(D3)A2(Cs)) -

We obtain the following equations:

B \/5 4000 \/5 X4ioo
3v15 3v21
1 ~
X2100
V70
\/5 Y4000 _ 9 \/5 X4ioo

BENGE 3v/21
2 Xzioo

+_

V70
_ 1 4000
V30

1 X41000Jr 1 X2100

S 2V21 V35

(ex(t2)|Heclex(t2)) =

(a1(t2)|Heclar (t2)) =

(ex(e)|Heelex(e))

(ex(t2)[Heclex(e))
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G. Relations between the crystal-field parameters
used in LFM calculations and those derived from
optical absorption spectroscopy

As mentioned in Ref. @, two equivalent parameter
sets are available in optical absorption spectrocopy to
describe the crystal-field in trigonal symmetry: (D,, D,
D) and (v, v', Dy). In the following, we make connexion
between the two sets.

1. (Do, D;, Dq) parameter set

H,. is defined as Hee = Hewp + Hyrig, where Heyp and
Hi,iq are the Hamiltonian for the cubic and the trigonal
contributions to the crystal-field, respectively. According
to Ref. [t] (Eq. 3.88), we have:

2
<ei(t2)|Htrig|ei(t2)> =D, + gDT’

(a1(t2)|Hiriglai (t2)) = —2D, — 6D,
7

(ex(e)|Heriglex(e)) = 3D,

(ex ()l Hurigles (6)) = —22(3D, - 5D,).

If the cubic term H.,; is added, we have:

2
(ei(t2)|Hcc|ei(t2)> = _4Dq + Da + gDTa

<a1(t2)|Hcc|a1(t2)> = 74Dq — 2Do- - 6D-,—7
7

(ex(e)|Heclex(e)) = 6Dq + 5 D,

V2

(ei(t2)|Hcc|ei(e)> = _?(3Dg — 5DT).
(48)
Combining Egs @ and , we obtain:

V10
X0 = = — (18D, + 7D,),

V3
4100 _ 10\/14D
- T
V3

X210 = —/70D,.
(49)
X 4000 contains only the cubic part of the crystal field,
although D, appears in its expression. This means that
the trigonal distortion, via D;, contributes to the e — 5
splitting of the d-orbitals. On the contrary, X 4100 and
X 2100 are entirely due to the trigonal distortion. Hence,
when we investigated the effect of the trigonal distor-
tion on the XANES spectra in the LFM calculations, the



value of X490 and X 2199 were set to zero, while the value
of X409 was fixed to the value used in D3g symmetry.
Things can be simplified by defining Dy, so that it con-
tains also the contribution of D, to the cubic field. This
leads to the definition of two other distortion parameters,

v and V.

2. (v, V', D) parameter set

The crystal-field Hamiltoninan H.. is now defined as
Hee = H|,,+H,,,;,, where H/ , contains the contribution
of D,. According to Ref. ] (Eq. 3.90), we have:

1
(e (b2) | Hyyiglex(t2)) = —3v,

[\]

(a1(t2)|Hypiglar(t2)) = v,
(ex(t2)|Hypiglex(e)) = V'

w

(50)

If we add the cubic term H/,,, which is here defined so
that the center of gravity is maintained for the trigonally

split ¢a4 orbitals, the following equations are obtained:

1
(e (t2)| Hecles(t2)) = —4D), = <.

(a1(ta|Heelai (t2)) = —4Dy + %y,
<€:t(t2)|Hcc|€:t(€)> =v.

(51)
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Combining Egs @ and , we have:

X000 = 6/30D},

41 772\/5 v— 3

X 00 - \/7 (\/5 3 )a

21 74\/35 , 1 y

X007—7 (y+—2\/§ ).
(52)

3. Relations between the two parameter sets

Combining Eqgs @ and @, we obtain the relations given
in Ref. i (Eq. 3.91):

7
/
Dq == Dq + EDT,

20
= _SDO' - _DT)
Y 3

5
V' = —\2D, + 5%137.

(53)



