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We study by synchrotron small-angle X-ray scattering highly aligned lamellar phases of a zwitterionic surfac-
tant, doped with monodisperse and spherical hydrophobic inorganic particles as a function of particle concen-
tration. Analysis of the structure factor of the two-dimensional fluid formed by the particles in the plane of the
bilayer gives access to their membrane-mediated interaction, which is repulsive, with a contact value of about
4 kBT and a range of 14̊A. Systematic application of this technique should lead to a better understanding of
the interaction between membrane inclusions.

PACS numbers: 87.16.dt, 61.05.cf, 82.70.Dd

In the last decades, much effort was dedicated to the un-
derstanding of self-assembled membranes, and in particular
of the interaction between membrane inclusions and the host
bilayer. This is a challenging problem, since the membrane
must be considered as a many-particle system, its properties
being collectively determined by the assembly and not by the
chemical properties of the individual molecules [1]. Notwith-
standing the complexity of the system, the concepts developed
in soft matter physics should be operative in this context and
even ‘simplified’ models could yield valuable information.
For this reason, a considerable body of work deals with the
theoretical modelling and numerical simulation of such mixed
systems, aiming in particular to determine the membrane-
mediated interaction between inclusions [2]. Thorough under-
standing of these interactions could make a substantial contri-
bution to topics as diverse as the formulation of new com-
posite systems and understanding the activity of membrane
proteins.

However, this theoretical work was not yet matched by
enough experimental results. The first such data was ob-
tained by directly measuring the radial distribution function
of membrane inclusions using freeze-fracture electron mi-
croscopy (FFEM) [3]. These data were compared to liquid
state models and could be described by a hard-core model
with, in some cases, an additional repulsive or attractive in-
teraction [4]. FFEM was not extensively used, undoubtedly
due to the inherent experimental difficulties; moreover, itis
not obvious that the distribution measured in the frozen sam-
ple is identical to that at thermal equilibrium.

Considering the typical length scales to be probed, X-ray
and neutron scattering techniques [5] are uniquely adaptedto
the study of this problem. As an example, the pores formed
by the antimicrobial peptide alamethicin in dimyristoylphos-
phatidylcholine bilayers were shown to repel each other [6].
These studies are however hindered by the low scattering con-
trast of the proteins (and, in many cases, by their scarcity),
whence the practical (and also the fundamental) interest of
finding out whether other –perhaps more adapted– particles
can be inserted within membranes.

The purpose of this Letter is to show that self-assembled
bilayers can be doped with significant amounts of (hydropho-

bic and charge-neutral) hybrid nano-objects and that these
probes can be used to determine accurately the membrane-
mediated interaction. Their use presents substantial advan-
tages: they are “rigid” (fixed atomic configuration) and per-
fectly monodisperse, therefore imposing a well-defined mem-
brane deformation, whereas membrane proteins can assume
various conformations; their scattering contrast is high (due
to the presence of metal atoms); their surface properties can
be tailored by changing the nature of the grafted ligands. Con-
ceptually, these inclusions are also easier to model, sincethey
do not “break” the surface of the monolayer and hence there
is no contact line, where the choice of the boundary condition
would be somewhat delicate [7].

This approach can help clarify long-standing questions,
such as: Is a continuous model sufficient for an accurate de-
scription of the membrane and, if so, down to what length
scale? What are the relevant parameters and how can they be
measured? What are the specificities of mixed bilayers, and in
particular of lipid membranes (microscale separation, raft for-
mation etc.)? In the long run, systematic studies should yield
a clearer picture of membranes as two-dimensional complex
systems.

The nanoparticles used here are butyltin oxo clus-
ters{(BuSn)12O14(OH)6}2+(4-CH3C6H4SO−

3 )2, denoted by
BuSn12 in the following. They were synthesized and charac-
terized as described in reference [8] (for their structure,see
Figure 1 in this reference). They were dissolved in ethanol at
a concentration of 23.47 wt.%.

The zwitterionic surfactant, dimethyldodecylamine-N-
oxide (DDAO) was purchased from Sigma-Aldrich and dried
in vacuum (using a liquid nitrogen-cooled solvent trap) for
20 h. No weight loss was observed after this step, so we con-
clude that the surfactant was dry as supplied (see [9] for a de-
tailed discussion). DDAO was then dissolved in isopropanol
at a concentration of 23.02 wt.%.

We mixed the BuSn12 and DDAO solutions to yield the de-
sired particle concentrations, and then dried the mixturesin
vacuum; the final (dry) mass was about 200 mg for each sam-
ple. We then added water at a concentration of 15–27 wt.% of
the final hydrated mixtures, which are thus in the fluid lamel-
lar Lα phase (see the phase diagram of the undoped system
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in [9]). The molecular weight of DDAO is 229.40 (Sigma-
Aldrich), its density is0.84g/cm

3 and the thickness of the bi-
layer is25±1Å [10], yielding an area per surfactant molecule
ADDAO = 37.8Å

2
. For the BuSn12 particles, we take a

molecular weight of 2866.7 and a density of1.93g/cm
3 [8].

Using these values and neglecting the increase in bilayer sur-
face due to the inserted particles yields the (two-dimensional)
number density of particles in the plane of the membrane,n.

The samples were prepared in flat glass capillaries (Vitro-
Com Inc., Mt. Lks, N.J.), 100µm thick and 2 mm wide by
gently sucking in the lamellar phase using a syringe. The
capillaries were flame-sealed. Good homeotropic alignment
(lamellae parallel to the flat faces of the capillary) was ob-
tained by thermal treatment, using a Mettler FP52 heating
stage. The samples were heated into the isotropic phase (at
130 ◦C) and then cooled down to the lamellar phase at a rate
of 1 ◦C/min.

The small-angle x-ray scattering measurements were per-
formed at the European Synchrotron Radiation Facility
(ESRF, Grenoble, France) on the bending magnet beamline
BM02 (D2AM), at a photon energy of 11 keV. See reference
[11] for more details on the setup. The data was acquired us-
ing a CCD Peltier-cooled camera (SCX90-1300, from Prince-
ton Instruments Inc., New Jersey, USA) with a resolution of
1340×1300 pixels. Data preprocessing (dark current subtrac-
tion, flat field correction, radial regrouping and normalization)
was performed using thebm2img software developed at the
beamline.

The incident beam was perpendicular to the flat face of
the capillary (parallel to the smectic director, which we take
along thez axis.) Thus, the scattering vectorq is mostly con-
tained in the(x, y) plane of the layers, and the measured scat-
tered signalI(q) probes inhomogeneities of the electron den-
sity in this plane. Since the bilayers form a two-dimensional
liquid, the scattering pattern exhibits azimuthal symmetry:
I = I(q = |q|). We also measured the scattering intensity of
two BuSn12/ethanol solutions in the same type of capillary.
The accessible scattering range was0.04 < q < 0.9Å

−1
.

Since the electron density of the butyl chains is similar to
that of the dodecyl chains within the bilayers and to that of
ethanol, we expect the electron contrast of the particles to
be due exclusively to their inorganic core, which is slightly
ovoidal, with an average radius of 4.5Å. Indeed, the intensity
at higher scattering vectors (q > 0.5Å

−1
) is well described for

all samples by the form factor of a sphere|Ff(R, q)|2, with a
radiusR = 4.5 ± 0.2Å used as a free fitting parameter. The
interaction between particles is described by the structure fac-
tor, defined asS(q) = I(q)/|Ff(R, q)|2 [12]. The structure
factors thus obtained are shown in Figure 1 for all in-plane
concentrations, listed in the caption.

The additional interaction is viewed as a perturbation with
respect to the hard core (disk or sphere) model, taken into
account via the random phase approximation (RPA) [13]. In
this approach, one obtains the direct correlation functionof
the perturbed systemc(r) from that of the reference system
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FIG. 1: Structure factorsS(q) of the 2D fluid formed by the BuSn12
particles in the plane of the membranes, for different concentrations,
from top to bottom:n = 0.217, 0.231, 0.429, 0.434, 0.451, 0.584,
0.801, 1.102, 1.275, 1.976, 2.147, and2.304 10−3Å

−2

. The curves
are shifted vertically in steps of 0.2. Gaps in the curves correspond to
the presence of (weak) lamellar peaks, due to occasional alignment
defects, mainly taking the form of oily streaks.

cref(r) as:c(r) = cref(r) − βU(r) [14] or, equivalently:

nβŨ(q) = S−1(q) − S−1

ref
(q) (1)

with β = (kBT )−1.

In three dimensions, the reference structure factorS3D
ref

for BuSn12 particles dissolved in ethanol is given by a
hard sphere interaction (in the Percus-Yevick approximation
[15, 16]) with a hard-core radius of 4.5̊A; the numerical par-
ticle densityn3D (in 3D) is determined from the mass concen-
tration of the solutions.

In two dimensions, an analytical form for the structure fac-
tor S2D

ref of hard disks was given by Rosenfeld [17]; we use
the same core radius of 4.5̊A as above. The Fourier trans-
form of the interaction potential,̃U(q), obtained by applying
relation (1) to the data in Fig. 1, is shown in Fig. 2 for all con-
centrations. For ease of calculation, both in two and three di-
mensions we model the interactionU(r) by a Gaussian, with
amplitudeU0 and rangeξ:

U(r) = U0 exp
[
−(r/ξ)2/2

]
(2)
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FIG. 2: The Fourier transform of the interaction potential,Ũ(q),
(open dots) obtained from the structure factors in Figure 1 in the
RPA approximation (1). The solid line is a Gaussian model. The
shaded area is chosen to cover most experimental points and is also
delimited by two Gaussians (see text for details). The data points far
above and far below the shaded range correspond ton = 0.429 and
0.584 10−3Å

−2

, respectively (third and sixth curve from the top in
Figure 1).

with Ũ(q) the Fourier transform ofU(r), given by:

Ũ(q) =





2π U0 ξ2 exp
[
− (qξ)

2
/2

]
in 2D

(2π)3/2 U0 ξ3 exp
[
− (qξ)

2
/2

]
in 3D

(3)

With the exception of two curves (forn = 0.429 and
0.584 10−3Å

−2
) that are anomalously high or low, respec-

tively, all data points are reasonably well covered by the
shaded area in Figure 2, limited by two Gaussians (2D case
in Eq. 3), with U0 = 3.22 kBT and ξ = 15.71 Å for the
lower bound andU0 = 6.93 kBT , ξ = 12.86 Å for the upper
bound. The solid line, giving approximately the midline of the
shaded area, is described byU0 = 4.75 kBT andξ = 14.14 Å.
The apparent negative values ofŨ(q) aroundq = 0.2 Å

−1
in

Figure 2 are probably due to the enhancement of the interac-
tion peak ofS(q) with respect to the reference potential by
the presence of the repulsive interaction; this feature is not
captured by the simple RPA treatment. The (real-space) inter-
action potentialsU(r) corresponding to the aforementioned
values ofU0 andξ are plotted in Figure 3, using the same con-
vention. Thus, the solid line is the estimate for the interaction
and the shaded area the uncertainty due to the value spread in
Figure 2. Of course, forr < 2R = 9 Å the repulsion is due to
the hard core (solid vertical line).

To make sure that the interaction is induced by the mem-
brane, we also show the repulsion measured for BuSn12 par-
ticles in ethanol (lower solid line in Figure 3); its amplitude
and range are clearly lower than for the interaction in the
membrane (for reference,U0 = 4 kBT andξ = 7 Å). It is
probably due to the steric repulsion between the butyl chains
grafted onto the inorganic core.

2R r - 2R

FIG. 3: Interaction potentialU(r) of the BuSn12 particles within
the bilayers, obtained by taking the inverse Fourier transform of the
solid line and the shaded area in Figure 2 (see text for the numerical
values). The lower curve is the interaction potential of the particles
in ethanol. The solid vertical line marks the hard core interaction
with radius 4.5Å

The main result of this work is hence that the (two-
dimensional) interaction between BuSn12 particles inserted
within DDAO bilayers can be described by a potential of the
form (2), with U0 = 5 ± 1 kBT andξ = 14 ± 1 Å. Below,
we discuss briefly the various theoretical predictions, buta di-
rect comparison cannot be made since they generally concern
cylindrical inclusions that traverse the membrane, without be-
ing covered by the monolayers.

The simplest approach is to model the membrane as a
continuous medium and write the free energy of the bi-
layer+inclusions system in terms of elastic deformation, de-
scribed by the Helfrich Hamiltonian [18], where the molec-
ular properties of the bilayer are abstracted into mesoscopic
parameters, such as the bending and stretching moduli and
the spontaneous curvature of the monolayer. A systematic
study was performed in the group of Pincus [19–21]. Their re-
sults highlight the importance of the spontaneous curvature of
the monolayersc0: the interaction is attractive whenc0 van-
ishes (the elastic energy is minimized by the aggregation of
inclusions) but can become repulsive when the deformation
induced by the inclusion is such that the curvature of the indi-
vidual monolayer has the sign ofc0. In our case, this would
mean that the DDAO monolayers tend to havec0 > 0 (convex
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head-groups, see the sketch in Figure 3)
However, inclusions also perturb the structure of the mem-

brane by restricting the conformation of the lipid chains in
their vicinity [22], and this can lead to significant interaction,
even in the absence of “large scale” bilayer deformation (no
hydrophobic mismatch.) In particular, Lagüe et al. [23] find
that “smooth” hard cylinders repel each other in some lipid
bilayers; the amplitude and range of this interaction is in qual-
itative agreement with our results (for cylinders with a 5Å
radius in dioleoylphosphatidylcholine bilayers, the repulsive
lipid-mediated interaction has a maximum value of7 kBT and
extends 20Å from contact.) Nonetheless, the interaction is
highly dependent on the chemical structure of the lipid, so a
meaningful comparison is difficult to make using the available
data.

Recently, some efforts were made [24, 25] to account for
both effects (elastic energy and restrictions on chain confor-
mations) within an extended model, including as variables
both the variation in membrane thickness and the local molec-
ular tilt. Their coupling removes the symmetry between the
positive and negative spontaneous curvature values, leading to
repulsion only forc0 > 0 combined with negative hydropho-
bic mismatch (bilayer “pinching”.) At first sight this predic-
tion seems to be at odds with our system, but the difference in
geometry plays an important role: in our case, we expect the
particles to be covered by positively curved monolayer caps
(energetically favourable), while the calculation in [25]con-
siders the inclusions as vertical cylinders. A more accurate
comparison should be very interesting.

We have shown that nano-objects can be used to probe the
properties of self-assembled bilayers; conversely, one can en-
vision using ordered surfactant phases (combining a high de-
gree of order with easy processability and very good wetting
properties) to organize and align such objects in view of ap-
plications.
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