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ANALYTIC CONTINUATION AND EMBEDDINGS IN WEIGHTED BACKWARD
SHIFT INVARIANT SUBSPACES

ANDREAS HARTMANN

ABSTRACT. By afamous result, functions in backward shift invariarispaces in Hardy spaces
are characterized by the fact that they admit a pseudoagtion a.e. orif. More can be said if
the spectrum of the associated inner function has holéb. drhen the functions of the invariant
subspaces even extend analytically through these holesiiN\iscuss the situation in weighted
backward shift invariant subspaces. The results on agatgtitinuation will be applied to con-
sider some embeddings of weighted invariant subspacethieitounweighted companions. Such
weighted versions of invariant subspaces appear natunalhe context of Toeplitz operators. A
connection between the spectrum of the inner function am@jpiproximate point spectrum of the
backward shift in the weighted situation is establishech&gpirit of results by Aleman, Richter
and Ross.

1. INTRODUCTION

Backward shift invariant subspaces have shown to be of greaiest in many domains in com-
plex analysis and Operator Theory. ¥, the classical Hardy space of holomorphic functions
on the unit diskD satisfying

1713 = sup o [ |fre) Pt < oo,

0<r<1 &7 J_,
they are given by7? & I H?, wherel is an inner function, that is a bounded analytic function in
D the boundary values of which are in modulus equal to 1 a.&.dknother way of writing the
model spaces is

K} =H*NITHZ,

whereH? = zH? is the subspace of functions ii* vanishing in 0. The bar sign means complex
conjugation here. This second writirig? = H?* N I HZ does not appeal to the Hilbert space
structure and thus generalizesi® (which is defined ag/? but replacing the integration power
2 by p € (0,00); it should be noted that fgr € (0, 1) the expressior f||? defines a metric;
for p = oo, H* is the Banach space of bounded analytic function®omith obvious norm).
Whenp = 2, then these spaces are also called model spaces. Modekdpmaee attracted a
lot of attention of course in operator theory, initially imet function model of Nagy and Foias,
but then also in perturbation theory with Clark’s semingdgraon rank one perturbations of the
compressed shift oA7. As a result of Clark the Cauchy transform allows to idenfify with
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2 ANDREAS HARTMANN

L*(o,,) Whereo,, is a so-called Clark measure that one can deduce frdBtark’s motivation was
in fact to consider completeness problems in model sp&i¢esn a series of papers, Aleksandrov
and Poltoratski were interested especially in the behaabthe Cauchy transform when=£ 2.

Another interest in backward shift invariant subspaceseors embedding questions, espe-
cially when K¥ embeds into somé?(;). Those questions were investigated for instance by
Aleksandrov, Treil, Volberg and many others (see for instafi VI§] for some results). Here
we will in fact be interested in the different situation whee weight is not orL.? but on K7.

A very important result in connection witR'7-space is that of Douglas, Shapiro and Shields
([DSS77], see alsd JCRPO, Theorem 1.0.5]). They have indaatacterized(? as the space of
functions in H? that admit a so-called pseudocontinuation. Recall thanhatfon holomorphic
inD, :=C \ clos D — we will useclos £ to designate the closure of a gdein order to preserve
the bar-sign for complex conjugation — is a pseudocontionatf a functionf meromorphic
in D if ¢ vanishes ato and the outer nontangential limits ¢f on T coincide with the inner
nontangential limits off on T in almost every point off. Note thatf € K? = H> N [ H?
implies thatf = Iy with v € H2. Then the meromorphic functiofy/I equalsy a.e.T, and
writing ¢ (2) = 3., b, 2", itis clear that)(z) := 3" ., b,/2" is a holomorphic function ii.,
vanishing abo, and being equal t¢ /I almost everywhere ofi (in fact,) € H%(DD,)).

Note that there are functions analytic @rthat do not admit a pseudocontinuation. An exam-
ple of such a function ig(z) = ¢* which has an essential singularity at infinity.

On the other hand, there are of course pseudocontinuati@bsate not analytic continua-
tions. A result by Moeller[Mo@2] states that outside thectpem of I, (1) = {\ € closD :
liminf, ., I(z) = 0}, which is a closed set, every functigne K? extends analytically through
the circle. It is not difficult to construct inner functiodsfor whicho(/) N T = T. Take for
instance forl the Blaschke product associated with the sequenee {(1 — 1/n?)e™},, the
zeros of which accumulate at every pointBn

The problem we are interested in is the case of a weightedi@adkshift invariant subspace.
Let 7 be any inner function, anglan outer function inH?, 1 < p < co. Set

Ki(lgl") = H(|g]") 0 THG (|g[?)-

Here

1" . :
HP(|g") = {f € Hol(D) : [|fl[[,), = sup — [ [f(re")["|g(re")"dt

0<r<1 2m -

= [ I Platetpar < o).
Clearly H?(|g|?) = {f € Hol(D) : fg € H?}, andf — fg induces an isometry from/*(|g|?)
onto H?. Such spaces are not artificial. They appear naturally inahéext of Toeplitz operators.
Indeed, ifp = Ig/g, is a unimodular symbol, théwer T, = gK?#(|g|?) (see [HS0O3]). Herd, is
defined in the usual way b¥, f = P, (¢f), P; being the standard Riesz projection b(T):

Y onez @G > w0 anC", ¢ € T. Note that whenever # f € ker T,,, whereyp is unimodular
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and f = Jg is the inner-outer factorization df, then there exists an inner functiérsuch that
p=1g/g.

The representatioker 7, = g K7 (|g|?) is particularly interesting whenis the extremal func-
tion of ker 7,,. Then we know from a result by Hitf [HIB8] (see al§o [Sa94] éode Branges-
Rovnyak spaces approach to Hitt’s result) that whes 2, ker 7, = gK7, and thaty is an
isometric divisor orker T,, = gK7 (or g is an isometric multiplier ork7). In this situation we
thus have?(|g|?) = K?. Note, that forp # 2, if ¢ is extremal forgK¥(|g|*), thenK?(|g|?) can
still be imbedded intd<? whenp > 2 and in K% whenp € (1, 2) (see [HS03], where it is also
shown that these imbeddings can be strict). In these situmtvhen considering questions con-
cerning pseudocontinuation and analytic continuationcarecarry over td<?(|g|?) everything
we know abouts? or K7 (which is the same concerning these continuation matters).

However, in general the extremal function is not easily cketigle (explicit examples of ex-
tremal functions were given if JHS03]), in that we cannotdetine it, or for a givery it is not
a simple matter to check whether it is extremal or not. So tisé duestion that we would like
to discuss is under which conditions grand 7, we can still say something about analytic con-
tinuation of functions ink7(|g|?). Our main result is that under a local integrability coratitdf
1/g on a closed arc not meeting the spectrun itfis possible to extend every? (|¢|?) function
through such an arc. The integrability condition is reali#dor example|g|? is an(A,) weight
(but in this situation the analytic continuation turns aube a simple consequence of Holder’s
inequality and Moeller’s original result, see Proposithand comments thereafter).

In connection with analytic continuation under growth citiodis, another important result
can be mentioned. Beurling (s¢e [Bep72]) proved that undeesategral condition of a weight
w defined on a squar€, every function holomorphic on the upper and the lower héithe
square and which is bounded by a constant tifyes extends analytically to the whole square.
Our result is different since we do not consider generic tions holomorphic in both halfs of
the square but admitting already a certain type of pseudoea@tion. This allows to weaken the
condition on the weight under which the analytic continois possible.

One could also ask whefi? (|¢|?) still embeds intaH?, or even ind", r < p, in other words,
when K% (|g|") ¢ K% or K7(|g|’) € K7 (note thatkK} N H> C K7(|¢|?), which in particular
givesK? C K¥(]g") whenever is bounded, so that in such a situation the preceding irausi
is in fact an equality). We will discuss some examples indisction related to our main result.

Naturally related to the question of analytic continuati®ithe spectrum of the restriction of
the backward shift operator 67 (|g|?) (see [ARR9B]). As was done in Moeller’s paper, we will
explore these relations in the proof of our main theorem @tydic continuations.

Finally we mention a paper by Dyakonoy ([DY96]). He discusBernstein type inequalities
in kernels of Toeplitz operators which we know from our poas discussions are closely related
with weighted space&” (|¢|”). More precisely, he discussed the regularity of functioriei 7,
depending on the smoothness of the symhol

The paper is organized as follows. In the next section wedisltuss the analytic continuation
when the spectrum af is far from points wherg vanishes essentially. We will also establish
a link with the spectrum of the backward shift @' (|¢g|?) in this situation. As a corollary
we deduce that in certain situations one can get an embeddifg(|¢|?) into its unweighted
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companion. A simple situation is discussed wheéf(|g|?) can be embedded into a biggkt

(I < r < p), and so still guaranteeing the analytic continuation idetshe spectrum of.
Section 3 is different in flavour. We will focus on the embedpproblem by discussing some
examples wher?7(|g|?) does not embed int&’?. It turns out that in the examples considered
the analytic continuation is like in the unweighted casesoAln these examples the spectrum of
I comes close to points whegevanishes essentially.

2. RESULTS WHEN0(I) IS FAR FROM THE POINTS WHERE) VANISHES

We start with a simple example. Létbe arbitrary with—1 ¢ o(7I), and letg(z) = 1 + z, so
thato (1) is far from the only point whereg vanishes. We know thaker 77, = gK7%(]g|?) (note

that this is a so-called nearly invariant subspace). Letonspute this kernel. We first observe
that}% = Z. HenceTy; = T3, the kernel of which is known to bE?,. So
g

gK7(lgl") = K21
The space on the right hand side contains the constantémsctHencd /g € K% (]g|?) (observe
thatl/g = [P with ) (z) = I2/(1+2) = Iz/g € HE(|g|?)). In particular, K (|g|?) contains the
function1/¢ which is badly behaved ir 1, and thus cannot extend analytically through
This observation can be made more generally as stated ioltbeing result.

Proposition 1. Let g be an outer function it??. If ker T3, # {0} contains aninnerfunction,
thenl/g € K¥(|g|?) for everyinner function/.

Before proving this simple result, we will do a certain numbkcomments:

(1) The example that we discussed above corresponds obyiouthe situation when the
inner function contained in the kernel Bf , is identically equal td..

(2) The proposition again indicates a way of finding exampfesand such thatx?(|g|?)
contains functions that cannot be analytically contintredugh points whergis “small”.

(3) Suppose for the next two remarks that 2.

e The claim that the kernel dfy,, contains an inner function implies in particular
that this Toeplitz operator is not injective and gois not rigid in H' (see [Sagd5,
X-2]), which means that it is not uniquely determined — up tea multiple — by
its argument (or equivalently, its normalized versigni||¢*||; is not exposed in the
unit ball of /).

e Itis clear that if the kernel of a Toeplitz operator is notueed to{0} — or equiva-
lently (sincep = 2) ¢? is not rigid — then it contains aauterfunction (just divide
out the inner factor of any non zero function contained in kbenel). However,
Toeplitz operators with non trivial kernels containing noer functions can be eas-
ily constructed. One could appeal to Hift [Hj88], Hayashafl9(0] and Sarason
[Ea94]: the first states that every nearly invariant subssof the formgK? andg
is extremal thus multiplying isometrically aii?, the second tells us hoyhas to be
in order thaty K# is in particular the kernel of a Toeplitz operator (the syiii®ing
Ig/g), and the third one gives a general formgoinsuring the extremality (or the
isometric multiplication property). This allows to constt a kernel with the desired
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properties. However we can short-circuit these resultstakel’%;;,,, = 7575/,
wheregy(z) = (1 — 2)* anda € (0,1/2). The Toeplitz operatdfy; 4, is invertible
(|go|* satisfies the Muckenhouptl,) condition — see Sectiofj 3 for more discus-
sions on invertibility of Toeplitz operators), af@;,,) ' = gOPJrgéO [Ro77] so that
the kernel ofl%;,, is given by the preimage undég; ,, of the constants (which
define the kernel dt%). Sincegy P, (¢/g0) = cg0/90(0), ¢ being any complex num-
ber, we havéker T%;;,,, = Cgo Which does not contain any inner function.

(4) See[Kade] for a discussion of the intersectign= H?(|g|?) N H{(|g|?). Theorem 3 of
that paper states that for points in the spectrum of the savef the backward shift —
which is related with the complement of those points wheegefunction inf, continues
analytically — there always exist functions with singulies in such a point.

Proof of PropositiofJLIf J € ker Ty, theng/g = Ji wherey € HY. Since the functions
appearing on both sides of the equality are of moduluthe function® = J is inner and
vanishes in 0. So

Hence
P p 1 1 P
Ki(lg") = = ker Trg = — K.
9 9
SinceO(0) = 0, we havel € K7y, and sol/g € K¥(|g|?). |
One can also observe that if the inner functibis in ker 7y, thenT’;,, 1 = 0, and hence
1 € ker Ty, = gK’(|g[*) and1/g € K%(|g|*), which shows that with this simpler argument

the proposition holds fof = J. Yet, our proof above allows to choose fbany arbitrary inner
function and not necessarily that containeddnT7 .

So, without any condition on, we cannot hope for reasonable results. In the above example
whenp = 2, then the function?(z) = (1 + z)? is in fact not rigid (for instance the argument of
(1 + 2)? is the same as that aj. Recall that rigidity ofg? is also characterized by the fact that
Ty, is injective (see[[SaPs, X-2]). Hefk,, = 1% the kernel of which i€C. From this it can also
be deduced thaf? is rigid if and only if H?(|g|?) N H?(|g|?) = {0} which indicates again that
rigidity should be assumed if we want to haki&(|g|*) reasonably defined.

A stronger condition than rigidity (at least when= 2) is that of a Muckenhoupt weight. Let
us recall the Muckenhoupt,) condition: for general < p < oo a weightw satisfies thé A,,)
condition if

1 1 ot
B:= sup —/w(az)daz X (—/wl/(pl)(x)d:c) < 00.
I subarc ofT |]‘ I |[‘ I

Whenp = 2, itis known that this condition is equivalent to the so-edIHelson-Szegd condition.
The Muckenhoupt condition will play some role in the resulh come. However, our main
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theorem on analytic continuation (Theorgm 1) works undeeaker local integrability condition
which follows for instance from the Muckenhoupt condition.

Another observation can be made now. We have already meatitvat the rigidity ofy? in
H' is equivalent to the injectivity of},,, wheng is outer. It is also clear thaf, ; is always
injectif so that whery? is rigid, the operatofly,, is injectif with dense range. On the other
hand, by a result of Devinatz and Widom (see d.g. [Ni02, TéoB4.3.1]), the invertibility
of T;,,, whereg is outer, is equivalent tty|* being (A4,). So the difference between rigidity
and(A,) is the surjectivity (in fact the closedness of the range)ef torresponding Toeplitz
operator. A criterion for surjectivity of non-injective &plitz operators can be found [nJHS$04].
It appeals to a parametrization which was earlier used byastaiyJHay9p] to characterize kernels
of Toeplitz operators among general nearly invariant sabsg. Rigid functions do appear in the
characterization of Hayashi.

As a consequence of our main theorem (see Refjark 1) anatytimaation can be expected
on arcs not meeting the spectrumowhen|g|?” is (4,). However the(A,) condition cannot
be expected to be necessary since it is a global conditiomealecontinuation depends on the
local behaviour off andg. We will even give an example of a non-rigid functigr{hence not
satisfying thg A,) condition) for which analytic continuation is always pdssiin certain points
of T whereg vanishes essentially.

Closely connected with backward shift invariant subspaseise spectrum of the backward
shift operator on the space under consideration. The fallgwesult follows from JARR9S8,
Theorem 1.9]: LetB be the backward shift oi/”(|g|?), defined byBf(z) = (f — f(0))/=.
Clearly, K7(|g|?) is invariant with respect t@ whenever! is inner. Theng(B|K7(|g|?)) =
oup(B|KY(|g|P)), whereo,,(T) = {\ € C : 3(f,.), with || f.]| = Land(A =T f,, — 0} denotes
the approximate point spectrum’6f and this spectrum is equal to

T\{1/CeT: everyf € K¥(]g|’) extends analytically in a neighbourhood(df

We would like to establish a link between this set aitdl). To this end we will adapt the proof
of the unweighted cas¢ [Md62, Theorem 2.3] to our situatids.in the unweighted situation
— provided the Muckenhoupt condition holds — the approxarsgectrum o3| K7 (|g|?) on T
contains the conjugated spectrumlofWe will see later that the containment in the following
proposition actually is an equality.

Proposition 2. Let g be outer inH? such that|g|” is a MuckenhouptA,)-weight. Let/ be

an inner function with spectrum(/) = {\ € closD : liminf, ., I(z) = 0}. Theno(I) C
ap(BIKT(19]"))-

Proof. It is clear that whenm\ € D N o (I), then) is a zero ofl andki = k,. Itis a general fact
that Bky = Aky. And sinceky, € K7 N H* C K% (]g|?), we see thah is an eigenvalue, so it is
in the point spectrum oB| K7 (|¢|?) and then also in the approximate point spectrum.

So, let us considex € T. Take such & € T with liminf, 5., [/(2)] = 0. We want to

prove that\ € o,,(B|K7(|g|")). To this end, lef,, — X\ a sequence of,, € D with I(\,,) — 0.
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Clearly

by (o) = — S = L2 IOWI() +cn]£ n) (j):cnki—"(z)ﬂLcn[(A_n)[(z)k/\n(z)j

-~

=:ln(2) =irn(z)
wherec, is chosen so thafc,ky||,» = 1. Clearlyl, = c,Prk; - as a projected reproducing
kernel is inK? N H> which is contained irk? (|g|*), andr,, € I(H?NH>) C IH?(|g|"). Since
lg|P is Muckenhoupt 4,), the Riesz projectiot®; is continuous orn’?(|¢|?) and so alsa’; =
IP_I. As in the unweighted cas&?(|g|?) = P;H?(|g|P) andI H?(|g|") = ker P;|H?(|g|?), SO
that the norm of:, k- in H?(|g|?) is comparable to the sum of the norms paindr,,.
L= [leakslligr = lnlligle + [17alligr = lnlligr + 11 (An)].

(Forp = 2, the boundedness of the projectiéh means that the angle betweéf}(|g|*) and
IH?*(|g|?) is strictly positive). Sincd (),,) goes to zero, this implies that the norifis||,» are
comparable to a strictly positive constant. Now,

1B = Newkslap = lleaOn = Al = 1A = Aul,
and hence
(B =Nlallgr = (B —=Neaks, — (B = Nralljgp
A= Aa| + || B — )\||Hp(\g\p)HHp(\g\p)|I()\n)|
IA = Xl + (1Bl #o(1g1p)— 1o (1g12) + [ADIL (M)

which tends to zero, whilgl, ||,» is uniformly bounded away from zero. Soe o, (B| K7 (|g]?).
|

<
<

We now come to our main theorem.

Theorem 1. Let g be an outer function inH?, 1 < p < oo and [ an inner function with
associated spectrum(/). LetI" be a closed arc ifl not meetings (/). If there existss > ¢,
>+ =1,with1/g € L*(T), then every functioff € K7(|g|") extends analytically througk.

Remark 1. It is known (see e.dMu73]) that when|g|? € (A,), 1 < p < oo, then there exists
ro € (1,p) suchthaig|’ € (A,) for everyr > r,. Taker € (1o, p). Then in particularl /g € L°,
wherel + £ = 1. Sincer < p we haves > ¢. which allows to conclude that in this situation
1/g € L*(T") for everyl’ C T (s independant of).

We promised earlier an example of a non-rigid functioior which analytic continuation of
K?-functionsis possible in certain points whegevanishes.

Example.Fora € (0,1/2), letg(z) = (1 + 2)(1 — 2)*. Clearlyg is an outer function vanishing
essentially inl and—1. Seth(z) = z(1 — 2)**, then by similar arguments as those employed
in the introducing example to this section one can checkdhay? = argh a.e. onT. Hence

g is not rigid (it is the “big” zero in—1 which is responsible for non-rigidity). On the other
hand, the zero ia-1 is “small” in the sense that satisfies the local integrability condition in a
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neighbourhood ot as required in the theorem, so that whenevlas its spectrum far from,
then everyK?(|g|?)-function can be analytically continued through suitabtesaround..

This second example can be pushed a little bit further. Irsghet of Propositiorf]l we check
that (even) when the spectrum of an inner functiotloes not meet-1, there are functions in
K?¥(]g|?) that are badly behaved inl. Let againg(z) = (1 — 2)®. Then

9(z) _ (A+2)A=2)* __go(2)
= =z .
9(z)  (I+2)A=2)*  go(2)
As already explained, for every inner functidnwe haveker 77, ,, = gK7(|g["), so that we
are interested in the kernkér 77, . We havely,, f = 0 when f = [u andu € ker T/, =
ker Tx55/4, = Cygo (see the discussion just before the proof of Proposfliom&hce the function

defined by

9(2) 9(z)  1+=z
isin K7(|g|’) and it is badly behaved ir1 when the spectrum af does not meet-1 (but not
only).

The preceding discussions motivate the following questaes rigidity ofg suffice to get
analytic continuation foik7(|g|?)-function wheneves (1) is far from zeros ofy?

Proof of Theoreni]1Take an arc as in the theorem. Singd) is closed, the distance between

o(I)andl is strictly positif. Then there is a neigbourhoodohtersected witf where|I(z)| >

o > 0. Itis clear that in this neighbourhood we are far away from spectrum of. Thus/

extends analytically through. For what follows we will call the endpoints of this agcand(s.

We would like to know whether every function ¥ (|¢|?) extends also analytically through
We adapt an argument by Moeller based on Morera’s theorerhud érst introduce some

notation (see Figure 1).

C(rz2)

Tz;///x

&
2
/D

r1 ro| 1/ro 1/r1

Figure 1: The region€/(r,) andC (1)

For suitabler, € (0,1) letry < . < r, < 1. Using Moeller's notation, we call’(rs)
the boundary of a circular sector whose vertices {af€; }»,—1 » (insideD) and C(r,) is the
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boundary of a circular sector with verticés, '¢;}1.,—1.» (outsideD). These sectors are thus in a
sense symmetric with respectf@and when, goes to 1, then at the limit they will form a circular
sector with vertice$r1(; }1—1 2 and{rl‘lg}l:m the interior of which contains in particul&r For
the construction to come, we need to assumerthat chosen in such a way that! is analytic
(and bounded) iiw'(r5) for everyr; < ry < 1, which is of course possible. We will also assume
that f admits boundary values iy and(,. Sincef is in N* it has boundary values a.e., and
so the previous requirement is not difficult to meet (by palgsmoving the endpoints,, (, if
necessary).

Take nowf € K?(|gP) = HP(|g|?) N TH{(|g|?), so thatf = I, wherey € HY(|g|P) can be
written asy(2) = 2, ., ¢,2", 2 € D. The functiony defined by

~ 1 A
= Cn—, €D, :=C\ closD,
P(z) Zc et \ clos

n>1

(the tilde-sign does not mean harmonic conjugation herdeipseudocontinuation of the mero-
morphic functionf/I. Note thatf/I is even analytic in every'(ry), 1 < 79 < 1. Since
[ € K7(lg|"), we in particular have

; iy Al
sup [ |f(re P lg(re) 5 < .
r<l Jo T

Then, since by constructioly I is analytic and bounded afi(r,), 7o < 1 < 13 < 1, we also
have

g dt
Plg(re™)lPo— < o0

ret
M, := sup \f< ) o

ri<r<l Jr [(7’6“)

On the other hand, for;, < r < 1, we have

_ it ) d ) ) d
L1 (5 paeenrgs = [lwteriaers:

: P

< sup [ (o) lg(pe”) | o = My < 00
r<p<lJr T

sincey € Hy(|g["). We will now use a version of Lebesgue’s monotone convergémeorem.

Recall that) is the pseudocontinuation ¢f/ I, so that a.e. off’ and in particular o',

— w(e—) — 0, whenr — 17,

(1) I(re') r

Let us prove that there exists> 0 and M > 0 such that for every; < r < 1,

2 / fret) et

1+e
~ dt
— — Y(— — < M.
I(re't) ¥ r ) 2 —
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Note first that forr; <r < 1

[[f) e

I(re') B ¢(7)

oo dt

olre ) ot
flre) | ity p At /

< ity 22
<o ([ [5s] tatrerst+ [

< Cp(Ml -+ MQ) =: M/.

From this and the conditioh/g € L*(I") we will deduce via a simple Holder inequality our
estimate[([2).
By assumption there is > ¢ with 1/g € L*(I"). Then there exists > 0 such thats >

Pyt > 4 =p/(p — 1). Hencel*(I) ¢ L7451 (T') and

1 pp—l(ﬁs) 1
3) / — dm < c¢ | —dm < oo
r \g| rlgl®

Then by Holder’s inequality, assuming alsg(1 + ¢) > 1,
I

f(?“eit) _ et 1T B f(reit) _ et |1 |g(7’6it)|1+€ dt
I(reit) ) %= /F I(reit) () lg(rett)[1+e 27
f(re“) eit)

~ P gy @rere 1 p/(p=(+e)) gy (p—(1+¢))/p
<4 [ s = o atrenrs [ (e -
o | I(rett) T s r \g(reit)|1+e 27

The first factor in this product is uniformly bounded by oueyibus discussions. Consider the
second factor. Recall thatis outer (hencé /g is in the Smirnov class) so that it is sufficient to
check whether the second factor is bounded-fer 1, and this follows from[(3). We have thus
proved [P).

By standard arguments based on Lebesgue’s dominated geneertheorem and Tcheby-
chev’s inequality we get thdf](2) together wiff (1) implytha

it it
[ g —o
r L(rett) r’ 2
From this point on we can repeat Moeller’s propf [Mp62, Lem#n2], which is based on
Morera’s theorem, and which uses the fact that when: 1, then the region€!(r,) andC (1)
fusion to a big angular sector, where the drgs:= {r,( : ( € I'} andI'y/,, are oriented in an
opposite direction and the difference of the integrals affoactionsf/I andv> on these two
arcs tends to zero.
This implies thatf /I extends analytically through. |

p

it |P
ezt

()

oo dt
it\|p "
9t 5 )

The theorem together with Propositign 2 and Renfiark 1 allote ebtain the following result.
Corollary 1. Let g be outer inH” such that|g| is a MuckenhouptA,) weight. Let/ be an

inner function with spectruna (/) = {A € closD : liminf, ., I(z) = 0}. Theno(l) =
aap(BIKT (19]7)-
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Proof. The inclusioro (1) C o,,(B|K%(|g|?)) has been discussed in Propositipn 2.

For the reverse inclusion, suppose tha¢ o(I). Note thato(1) N D = o,(B|K}(|g|?)) =
oup(B|K7(|gIP)) = o(B|K¥(|g|P)) so that it is sufficient to consider the case T. Sinceo (1)
is closed, there is an arc not meeting@) and containing\. By Theorenf]l and Remafk 1, every
f € K?(]g|") extends analytically through this arc, and thus in paréicthrough). So, by
[ARRY8, Theorem 1.9]\ cannot be inv,,(B|K%(|g|?)) (neither ina(B| K% (|g|?))). |

Another simple consequence of Theorldm 1 concerns embexiding

Corollary 2. Let [ be an inner function with spectrusi/). If I' C T is a closed arc not meeting
o(I) and if g is an outer function in{? such thatg| > 6 onT \ T" for some constant > 0 and
1/g € L*(T), s > ¢, 5 + ; = 1. ThenK[(|g|") C K}. If moreoverg is bounded, then the last
inclusion is an equality.

Remark 2. 1) Suppose = 2. By Hitt’s result[Hi88], wheng is the extremal function of a nearly
invariant subspacé/ C H?, then there exists an inner functidrsuch that)M/ = gK?, andg
is an isometric multiplier onk? so thatK? = K?%(|g|?). With the corollary we can construct
examples of spaces of infinite dimension where the lattetityenolds withouy being extremal.
Recall from[HS03, Lemma 3that a functiory is extremal foy K7 (|g|?) if [ f|g|*dm = f(0) for
every functiory € K%(|g|?). The following example is constructed in the spirit of tharegle in
[HS03, p.356] Fix a € (0,1/2). Lety(z) = (1 — 2)® and letg be an outer function i/ such
that|g|? = Re~ a.e. onT (such a function clearly exists). Let ndw= B, be a Blaschke product
with 0 € A. If A accumulates to points outsidethen the corollary shows thdt? = K7(|g|?).
Let us check thaj is not extremal. To this end we compyté, |g|*dm for A € A (recall that for
A€ A ky € K = Ki(|g”):

1 1 1
/k,\\g|2dm = /kA Revydm = </ kwder/dem) = §7€,\(0)7(0) + §<km”¥>

= S0+

which is different fronk, (0) = 1 (except whern = 0). Hencey is not extremal.

2) Observe thatf K7 (|¢g|?) c K7, then the analytic continuation is of course a simple con-
sequence of that ik? (and hence of Moeller’s result). And sinég'(|g|?) always containg!
which continues only outsidg( /), one cannot hope for a better result. Note also that the inclu
sion K7 (|g|?) ¢ K7 is a kind of reverse inclusion to those occuring in the cantéxCarleson
measures. Indeed, the problem of knowing wRénc L? (1) continues attracting a lot of atten-
tion (and the reverse situation to ours would correspond;to= |g|?dm). Such a measure is
called a Carleson measure fé¢7, and it is notoriously difficult to describe these in the gahe
situation (sedTV94] for some results; whehis a so-called one-component inner functibra
geometric characterization is available).
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Proof of Corollary[2.Pick f € K¥(|g|*). We only have to prove that € L*. By Theoren{]Lf
continues analytically throughand sof is bounded ori. On the other hand

1
/ fldm < / FPlgPdm < oo,
T\ T\
[ |

It is clear that the corollary is still valid wheh is replaced by a finite union of intervals.
However, in the next section we will see that it is no longeidvavhen I is replaced by an
infinite union of intervals under a yet weaker integrabitigndition onl /g (see Propositiofi 5).

A final simple observation concerning the local integrapitiondition1/g € L*(I"), s > ¢:
if it is replaced by the global conditiot/g € L*(T), then we have an embedding into a bigger
backward shift invariant subspace:

Proposition 3. Letl < p < ocand1/p+ 1/q = 1. If there exists > ¢ such thatl /g € L*(T),
then forr with 1/r = 1/p + 1/s we havelL?(|g|P) C L".

Proof. This is a simple application of Young’s (or Holder’s) inedjty:
1 T/p
Jisvam = [1sop i < ([ 15gpam)
[

Under the assumptions of the proposition we of course ale® Ké(|¢|’) C K. In particular,
under the assumption of the proposition, Moeller’s theotleem shows that every functioh e
K?%(]g|") extends analytically outside(1).

Another observation is that wheg|? € (A,), then by Remark] 1, we havg'g € L* for some
s > ¢ and so the assumptions of the proposition are met, and &jdinp|”) embeds intds7.

1 r/s
dm) < 00.
lgl®

3. EXAMPLES WHEN K?(|g|*) DOES NOT EMBED INTOK?

Here we will discuss some examples whgi(|g|?) does not embed int&’? even wherg|?
satisfies some regularity condition. The first example ismip€ is (A,). The second example,
discussed in Propositigh 5, is a kind of counterpart to Garp. In both examples the spectrum
of I comes close to the points wheyeanishes essentially.

Before entering into the discussion of our examples, we givesult in connection with in-
vertibility of Toeplitz operators. For an outer functigne H?”, the Toeplitz operato¥y,, is
invertible if and only if|g|” is an(A,) weight (we have already mentioned the result by Devinatz
and Widom for the casg = 2, see e.g.[[NIJ2, Theorem B4.3.1]; for genepakee [Ro77]). If
this is the case, the inverse 6f,, is defined byA = gP% (see [Ro7]7]). Then, the operator

Ay = P,z is anisomorphism off* onto H?(|g|").
Lemma 1. Supposdg|? is an (A,) weight and! an inner function. Them, = P+% is an
isomorphism of¥ onto K7(|g|*). Also, for everyA € D we have

(4) Agky = 2l
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Proof. Let us first discuss the action df, on the reproducing kernels:

_p By = By g By (R )
Aoka (1) = (P20 = (2 1) = by, ) = (R0 ) = B0,

so thatAgky = kr/g(N).

Note that from this we can deduce the inclusidpiky C K7(|g|’) when! is a Blaschke
product with simple zero4, since in that casg! = ky, A € A, span the spac&?, andk, =
K, € H?(|g|?) N T (g") = K7 (gP).

For general inner functionswe need a different argument. Recall thdt is an(A,) weight.
So, the function? := 1/gisin H?, 1/p + 1/q = 1. Taking Fejér polynomialé:y of G, we
getGy — G in H? (e.g. [Ni02, A3.3.4]),Gny € H*®. ThenAy := P,Gy is a finite linear
combination of composed backward shifts thus leavidfginvariant, so that’, Gyki € K7
for everyA € D. Now, sinceGyk! — GkI in H?, we obtainAykl — Aykl which is thus
in K7. On the other hand, sindg, € H> C H?, we also havedk! € HP(|g|?). Hence
Aokl € K?n HP(|g|P) € K7(]g|"). Note that the projected reproducing kernkls A € D,
generate a dense subspacé&in so Ao K7 < K¥(|g|").

Let us prove that{, is from K? onto K¥(|¢g|?). To this end, leth € K7(|g|*), thengh €
9K7(|g") = ker Tt;,,, and smcéTIg/g 1715/, With T3, invertible, we haveyh € ker 17,
if and only if 75/, (gh) € ker Ty = K7. And SOgh c T,/lK2 = gP, 2 K7, from where we get

he P LK) = AKY. m

We refer the reader t¢ [DyP8], in particular Proposition, o8 some discussions of the action
of Tz on K7 spaces.

Proposition 4. There exists an outer functignin H? with |g|> MuckenhouptA,), and an inner
function/ such thatk?(|g|*) ¢ K?3.

Proof. Takeg(z) = (1 — 2z)® with a € (0,1/2). Then|g|? is (A,). Let alsol = B, where
A = {1 —1/2"},. In this situationg (/) N T = {1}, which corresponds to the point where
g vanishes. Clearly, sinca is an interpolating sequence, the sequefieg /||ka, |2}, IS @
normalized unconditional basis 2. This means that we can wrife? = [2(—=_) meaning

lexn 2
that f € K7 if and only if

f=2 rwb

with 37, |a,|* < oo (the last sum defines the square of an equivalent norin
So, sincdg|? is Muckenhoupt A,), we get from )

AO k)\n k)\nQ —_— .
{Ao(kx, /l1Fxll2) }n {( )Hkxnllz}

and{kx,/(g(Mn) |k, ||2) s is thus an unconditional basis i&i2(|g|2) (almost normalized in the
sense thaf Ay(kx, /[|kx, [[2)]|42 is comparable to a constant independant)ofHence for every
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sequencer = (o, ), With 3° ~ a;| < oo, we have

kx
f& = an:::::_ﬂ____ S I(?Og|2)
g;; gl 12

Now, in order to construct a function i?(|g|*) which is not inK?, it suffices to choosén,,).,

in such a way that
Z o |? < +o0,
n>1

so thatf,, € K%(|g|?), and

> ==

n>1 g(An)
sothatf, ¢ K?. Recall that\, = 1 —1/2" andg(z) = (1—2)*. Hence|g(\,,)|? = 272"*. Now,
taking e.g.«,, = 1/n the first of the above two sums converges, angd/g(\,)|*> = 22"~ /n?
which does even not converge to zero. |

= +OO,

According to Propositiofl 3, the functiofy, constructed in the proof is in soni€] for a suit-
abler € (1,2) (this can also be checked directly by choosing (1,2) in such a way that

(sa=liuls) e 17, which is possible).

In view of Corollary[2, we will discuss another situation. that corollary we obtained that
when g is uniformly bounded away from zero dh\ I" wherel" is an arc on whicH /g is s-
integrable,s > ¢, andT" not meetingo (7), then K¥(|g|?) embeds intak? . We will now be
interested in the situation when the &rcs replaced by an infinite union of arcs. Our example is
constructed fop = 2. Then under the weaker assumptioly € L°, s < 2, the embedding turns
out to be false in general.

Proposition 5. There exists an inner functioh a sequence of disjoint closed ards,),, in T
not meeting the spectrum 6f such that for every < 2 there is an outer functiop € H? with
1/g € L*(T')and|1/g| > 6 onT \ T, wherel' = |, T,,, but K7 (|g|*) ¢ K7.

Proof. Let 1(z) = exp 24 which is a singular inner function the associated measuwehith
is supported o{1} (which is equal tas(7)). As in the preceding proposition we choase=
{A\n}n = {1 — 1/2"},, which is an interpolating sequencefiff. Moreover,/(),) — 0 when
n — oo, SO thatA is also an interpolating sequence f6f (see [HNP8[L] or[[NiOR, D4.4.9 (8)]).
Setf(z) =(1—1(2))/(1 - z), then
, [1=IO) 11—
e e

S0,y (L= A\ f(An)]? = >, 2" = 400, and f cannot be inf//? neither inK7.
Still f can be writtery = I+ with ) € N* (the Smirnov class) ang(0) = 0 (more precisely
¥(z) = zf(2)). It remains to choosg suitably so thatf|? is integrable againsy|>.

2i22n




ANALYTIC CONTINUATION AND EMBEDDINGS 15

For this construction we consider the argument:of

14+et  le ™ —eit cost

t) = I(e") =1 7 T -
o(t) arg I(e") ml_ezt ilett — 12 1 —cost

Observe thap'(t) = sint/(1—cost)? so thaty is strictly increasing oif0, 7). Now we consider
the intervallsM,, = [2-*+1D 2-%) We check that on these intervals the functipincreases
more tharer (k sufficiently big). For this let € (0, 7/2), then there exist§ € (¢, 2t) such that

sin & ~t &t - 1
(I—cos&)?  &i/4 ¢

(note thatt < & < 2t). Since the last expression tends to infinity wher 01 there exists an
N € N such that for every, > N, p(27%) — ¢(2-*+1) > 27. Hence, by the intermediate value
theorem, for every, > N, there exists;, € M, such thatp(¢;) = 0[27] and hencd (") = 1
and f(e'*) = 0. Sincet — I(e") depends continuously anoutside0, there exists), > 0
such that f(e")| < 1fort € Fy := [ty — 0k, 1 + 0x). We will setFE, = {¢* : t € F}.} and
OFi={e" : t € [ty + O, th1 — d0k—1)} C My, U M, (We can suppose thaj is sufficiently
small so thatf’}" is non void). We will also use the symmetric arc (with resgeche real axis):
I, =T} andl := I/ UT,. Then|[;| < 1/2%. Now fors < 2 pick 7 € (s,2) and let
oy, = 1/2F/". Defineg to be the outer function /% such that

|0(2t) — p(t)] = t

9| =w = Z arxr + xm\r a.e.T,
!

wherey, = xr, is the characteristic function of the dgt andI" = | J, I',,. The functionw is
bounded andbg-integrable:

2 k
/T\logw\dm = ; ITk|| log ag| < ;?;log2 < 00.

Henceg is in H> C H?. We check that /g € H*.

1
/ dm = |T\T|+ ) |Tx|(2¥7)* S 142 2k
T

lg]®
which converges since< r. Now

JE .

8 1 _o
5 1+8 Z 2k(27172/r)

which converges since< 2 (note that for the estimate dn\ I', we have used the fact that @i
the functionf is bounded byl, and on the remaining closed arc joiningt 6; to 2m — (t1 + d;)
it is continuous. |

1—1

1—2




16

ANDREAS HARTMANN

Observe that the function constructed in the previous proof is big (equal to 1) on siset
coming arbitrarily close to 1, and tending to zero on the i@eg sets wher — 1. In partic-
ular, such a function cannot satisfy the Muckenhoupt coomlit

The examples in the preceding two propositions show thatnbt always possible to embed
K?%(]g]?) into K2 under different conditions ofg|. However in both cases we have the global in-
tegrability condition that appeared in Propositipn 3, s th these cases we can emld€l |g|?)
into a K for a suitable- > 1.
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